
MiniMon
User Manual

(c) 1998-2004 by Christian Perschl

Minimon - User Manual

Page 2/41

Contents
Introduction...3
Frontend Overview ...4
Memory View...6

Representation of memory contents..6
Changing the displayed memory range...6

Terminal/Status view ..8
Command line...9
SFR view...15
Menue and Toolbar...17

File ..17
Edit..17
View..17
Target..18
Settings ...18
Script...21

Hardware Configuration ...23
Controller type ..23
Initialize Register ..23
Initial command calls ..23
Memory...24

Views ..27
Flash Operations ...28
Shell and Script Commands..30
MiniMon Communication Protocol ..34

Execute SWRESET ..34
Monitor Extension Interface for User Subroutines/Drivers ..35
Memory Management...36

Monitor ...36
Driver ..36
Data Exchange ..36

Used Resources...37
Kernel ...37
Drivers ..37
Registers..37
Stack ...37

Connect with the Target monitor ..38
The target monitor ..39

Initialisation ..39
Start a user program..39
Drivers ..39

External files ...40
Preferences:...40
Definition files: ...40
Register Definition file: ..40
Memory Definition file: ..40

Minimon - User Manual

Page 3/41

MiniMon
User Manual

Introduction

The idea of MiniMon is a tiny monitor program that is started via bootstrap loader to any C16x
XC16x micro controller system. The monitor is initially located in the internal RAM, and therefore
it works on any target hardware (bootstrap loader required), especially single chip applications. It
can be relocated to any address (internal or external memory) at any time. The monitor has only a
few simple commands (read memory, write memory, write word, jump segment...), all intelligence
is provided by the front-end.
The front-end, which runs on Windows 95/98/Me, Windows NT and Windows 2000/XP, provides
several functions:

 Hex editor functionality: load, save Intel Hex or binary files, modify, print
 Memory transfer functions: download, upload and compare any memory area
 Program, erase, (un)lock, (un)protect Flash/OTP/EEPROM areas
 View options: view memory as assembler code, 16 Bit or 32 Bit values
 Load and start user applications
 Call user subroutines
 SFR view: display and change SFR values, arranged in several register sets
 Terminal function: send and receive any data via RS232
 Scripting: A command can be selected either via menu or executed in scripts

The main advantages of Minimon is its compactness, its ability to locate free (without
recompile/link) and its easy memory access functions. It works on a kind of „hardware“ level and
has (nearly) no access restrictions.

The front-end has a terminal view that shows all data received over the serial interface (e.g. debug
outputs via printf).

The main applications of MiniMon are hex editing, memory dumps, Flash/OTP programming, tests
of micro controller peripherals and external hardware, downloading and starting of user
applications.

Minimon - User Manual

Page 4/41

Frontend Overview

The front-end of MiniMon consists of 4 parts:

 Memory view
 Terminal/Status view
 SFR view
 Command line

The memory view shows the current memory contents as hex values. Of course it is possible to
change the values. The memory area has an ASCII-section, too.

The terminal/status view is used by the front-end to output status and error messages. It is also used
to view received serial data while running an user application.

The command line (below the terminal/status window) is used to give commands to MiniMon (as
text). It can be used to send any bytes or text strings (like a terminal), too.

Minimon - User Manual

Page 5/41

The SFR view is used to display SFR register contents and to change them. SFR Registers can be
arranged in up to 5 independent Register sets, where 1 set is displayed at a time.

Minimon - User Manual

Page 6/41

Memory View

Representation of memory contents

It is distinguished between used and unused memory areas. An unused memory byte is viewed as a
blank character (initially a point, can be set by user). Used bytes are displayed as hexadecimal 8 Bit
values.

Besides, the used memory areas can be distinguished further between valid and invalid data. Data
that was just uploaded or (correct) downloaded is valid, changed values or loaded files are
principally invalid, until they are downloaded or programmed.
This means, the target memory area is NOT corresponding 1:1 to the displayed memory contents.
This is caused by the fact that Flash or OTP memory areas can´t be written or changed transparent
and instant.
Valid data is displayed by black hex numbers, invalid data is displayed by red hex numbers (initial
values, can be set by user).

Changing the displayed memory range

The memory view can display 256 bytes of the memory contents at a time. Initially, the memory
values from address 000000 to 0000FF is displayed. If a file is loaded, the first used address is
displayed. To scroll the memory within the current segment, the scroll bar right of the memory
view can be used. To step through the segments, the aligned double arrows can be used.
The second and recommended way to change the displayed memory range is to put the display start
address directly into the white text field in the upper left corner of the memory view (Direct
Address Input).
Scrolling can be applied by the keys PgUp and PgDown, too.

Changing the memory contents

It is possible to change a memory value. Therefore it is necessary to click with the mouse into the
according field and type in the value. To mark a selection as unread, the Del key is used

Minimon - User Manual

Page 7/41

The arrow keys can be used to move inside the memory view.

Selections

In the memory view, it is possible to select a memory range. Selection is important, because it’s the
base of most commands like upload, download, compare, program, disassemble, fill, unread, copy,
cut , save. All these commands concern the selection.

A simple way to select a memory range is the menu: Choosing Edit / Add selection will ask for
selection start and end address. Nevertheless, it is possible to input the start address and a given
selection size, too:

The other way is to make a selection by the cursor. Move to the selection start address, press the
SHIFT key and move to the end address. Any further move of the cursor without pressing SHIFT
will remove all selections.

Nevertheless, a third way exists to make a selection within the current displayed memory range: it
is done by mouse, pressing the left button at the selection start, move to the selection end and
release the button.

Multiselections are done like described above, but additionally it is necessary to press the CTRL
key. Otherwise, any cursor movement will remove all selections.

Clipboard

It is also possible to use the clipboard to copy or move memory contents from one address to
another. Besides, the copy command puts the currently selected memory contents to the Windows
clipboard as text, for documentation issues and to reuse them in other programs.

Therefore, use the menu commands edit-copy, edit-cut, edit-paste. It is also possible to use the
conventional short-keys CTRL-C, CTRL-X and CTRL-V. A third way of using the clipboard are
the shell commands _copy, _cut and _paste.

Minimon - User Manual

Page 8/41

Terminal/Status view

The terminal/status view displays all MiniMon status and error messages (beginning with *). It also
repeats all shell commands (beginning with >).

After starting an user program, it displays all data received by the serial interface as hexadecimals
or as ASCII Text (terminal display type can be changed by user).

It is possible to select any text in the terminal view and to copy it to the clipboard.

Double-clicking on an already executed command (leading ‚>‘) puts this command to the command
line again.

Minimon - User Manual

Page 9/41

Command line

The command line is used to input commands. It is an alternative way to the menu and toolbar
giving instructions. Besides, it can be used to send serial data directly, too (e.g. to application).

The last commands that were input to the command line are stored and available as command
history. Use the list field to repeat a previously executed command.

Command selector

To see all usable shell/script commands, use the comfortable command selector by pressing the
corresponding button.

In the appearing command selector window, all valid commands are listed, with usage message and
a short description.

Minimon - User Manual

Page 10/41

Commands

Additionally, all commands can be displayed by the command _HELP. The commands are the same
as used in scripts.

The following commands are accepted:

COMMAND PARAMETERS DESCRIPTION
_help - displays help message in

status/terminal view

File commands

COMMAND PARAMETERS DESCRIPTION
_load <filename> loads Intel Hex file <Filename> into

host memory
_save <filename>,

<recordsize> optional,
<format> optional

saves selection into Intel hex file
<Filename>

_binload <filename>,
<address offset> optional

loads binary file <Filename> into
host memory, beginning at given
address offset

_binsave <filename>,
<fill char> optional

saves selection into binary file
<Filename>, at fragmented
multiselections fill space with fill
char

Hex Editor commands

COMMAND PARAMETERS DESCRIPTION
_copy - copies selection into clipboard
_cut - cuts selection into clipboard
_paste <start address> pastes clipboard into memory,

beginning at <start address>
_fillmemory <fill value> fills selection with byte or word value

<fill value>
_clearmemory - mark selection bytes as unread
_randomfill - Fills current selection with random

values

Selection commands

COMMAND PARAMETERS DESCRIPTION
_addselection <start address>,

<end address>
adds selection from start address to
end address

_clearselections - removes all selections
_showselections - lists the current selections and their

range

Target Connection commands

COMMAND PARAMETERS DESCRIPTION
_connect NOPROMPT optional connects to target, if parameter

NOPROMPT is passed, no prompt
window is displayed

_reconnect - looks if monitor is ready; can be used
to reconnect

_disconnect - disconnects from target and closes
comm port

Minimon - User Manual

Page 11/41

Target Transfer commands

COMMAND PARAMETERS DESCRIPTION
_download - downloads selection into target

memory
_upload - reads from target memory into

selection
_compare <filename> optional compares selection with target

memory, if filename is passed, results
are written in <Filename>

_mov <address>,
<value>

writes word <Value> to memory at
address or to SFR

_movseq <address 1>,
<data 1>,
<address 2> optional,
<data2> optional,

Several memory writes of
independent data and addresses are
done within one write sequence

Target Execution commands

COMMAND PARAMETERS DESCRIPTION
_srst - executes Software Reset
_jmp <start address> jumps to <Start Address>
_call <start address>,

<R8> optional,
<R9> optional,
<R10> optional,
<R11> optional,
<R12> optional,
<R13> optional,
<R14> optional,
<R15> optional

calls driver/user subroutine at <Start
address>

Target Misc commands

COMMAND PARAMETERS DESCRIPTION
_einit - executes the EINIT command
_movemonitor <start address> moves monitor to <Start address>
_setprotection <security level>,

<password>,
<new password> optional

Enables or disables system register
protection (XC family only)

_pllcon <pllcon value> Sets the register PLLCON (XC
family only). The register PLLCON
can not be set by the standard write
commands, because it possibly
changes the baudrate. Therefore, this
separate command is provided.

SFR View commands

COMMAND PARAMETERS DESCRIPTION
_refreshsfr ON|OFF optional can be used either to refresh values of

SFR registers in current SFR set, or
to generally activate or deactivate the
refresh.

_addsfr <SFR name>,
<SFR set> optional

adds SFR register to current SFR set
or to given SFR set

_removesfr <SFR name>,
<SFR set> optional

removes SFR register from current
SFR set or from given SFR set

Terminal / Comm commands

Minimon - User Manual

Page 12/41

COMMAND PARAMETERS DESCRIPTION
_send <string>|:<hex values> sends the <send string> to RS232.

Send string can be hexadecimal
values, leaded by a :

_sendfile <filename> sends the binary file <filename> 1:1
to RS232

_setp <signal>,
0|1

sets the signal to logical 0 or 1.
Signal can be DTR or RTS

_setbaudrate <baudrate> changes the current interface
baudrate

Logfile commands

COMMAND PARAMETERS DESCRIPTION
_logfile ON|OFF turns the log file writing on or off
_setlogfile <filename> changes the log file to <filename>
_writelogfile <string> writes string to log file

Scripting commands

COMMAND PARAMETERS DESCRIPTION
_delay <delay time> delays for <delay time> seconds
_pause - pauses script execution and displays

message box. Waits for confirmation
(Button OK)

_message <string>|<SFR>|<variable>,<string>|<
SFR>|<variable>
optional,<string>|<SFR>|<variable>
optional,<string>|<SFR>|<variable>
optional,<string>|<SFR>|<variable>
optional,<string>|<SFR>|<variable>
optional,<string>|<SFR>|<variable>
optional,<string>|<SFR>|<variable>
optional,<string>|<SFR>|<variable>
optional,<string>|<SFR>|<variable>
optional,<string>|<SFR>|<variable>
optional,<string>|<SFR>|<variable>
optional,<string>|<SFR>|<variable>
optional,<string>|<SFR>|<variable>
optional,<string>|<SFR>|<variable>
optional,<string>|<SFR>|<variable>
optional

pauses script execution and displays
message box with messagestrings1-16.
Waits for confirmation (Button OK)

_cmessage <string>|<SFR>|<variable>,<string>|<
SFR>|<variable>
optional,<string>|<SFR>|<variable>
optional,<string>|<SFR>|<variable>
optional,<string>|<SFR>|<variable>
optional,<string>|<SFR>|<variable>
optional,<string>|<SFR>|<variable>
optional,<string>|<SFR>|<variable>
optional,<string>|<SFR>|<variable>
optional,<string>|<SFR>|<variable>
optional,<string>|<SFR>|<variable>
optional,<string>|<SFR>|<variable>
optional,<string>|<SFR>|<variable>
optional,<string>|<SFR>|<variable>
optional,<string>|<SFR>|<variable>
optional,<string>|<SFR>|<variable>
optional

displays message box with
messagestring1-16, but continues with
script execution. Does not wait for any
confirmation

_assign <expression> assigns a variable an expression. Valid
variable names are %0 to %99. On the
right side of the = either SFR registers

Minimon - User Manual

Page 13/41

or variables can be assigned. It is
possible to execute simple arithmetic
operations like +,-,*, /,&,|, ~. The
value of a variable can be displayed
via the _message or _cmessage
command

_executescript <filename>,<continue> optional Executes the subscript <filename>. If
the flag <continue> is set to ON, the
script is continued even if an error
occurs

_quit - Exits Minimon. If used, it is the last
script executed.

Flash commands

COMMAND PARAMETERS DESCRIPTION
_iprogram - Programs the current selection into

flash. The used flash sectors are
erased automatically by this
command before programming.

_program - Programs the current selection into
flash. The used flash sectors have to
be erased manually before
programming.

_erase <device name>,
<sector>

Erases the given <Sector> of the
Flash Device <Device name>

_status <device name> Reads and displays the relevant flash
status registers of the flash device
<Device name>

View commands

COMMAND PARAMETERS DESCRIPTION
_viewword - Views the current selection as 16 Bit

hexadecimal numbers and writes
them to Terminal view as well as log
file

_viewlong - Views the current selection as 32 bit
hexadecimal numbers and writes
them to Terminal view as well as log
file

_viewbyte - Views the current selection as 8 bit
hexadecimal numbers and writes
them to Terminal view as well as log
file

_viewassembler - Views the current selection as
assembler code and writes to
Terminal view as well as log file

_viewsfrs <SFR set> optional Views all SFRs of a given SFR set.
If no SFR set is passed, the current
SFR set is viewed. The output is
done to the terminal view as well as
the log file.

Direct Sending via RS232

While running an user application, it is possible to make user inputs that are sent to the serial
interface. Received data is displayed as hex values.

To send a single byte, input a colon and the hexadecimal value. (e.g. „:34“ to send the byte 34 hex).

Minimon - User Manual

Page 14/41

To send an ASCII string, just input the string.
All inputs (commands, hex bytes or strings) have to be terminated by pressing the RETURN key.

Minimon - User Manual

Page 15/41

SFR view

The SFR view can display SFRs, grouped by up to 5 register sets. The list of displayed SFRs is
fully adaptable.

SFR View SFR Add

The name, the physical address and the current value of the SFR are displayed in the list.

 The button ADD is used for adding SFRs to the SFR view.

 Use the REMOVE button to remove the selected SFRs from the SFR view. Multiselections can
be applied.

 The Button CHANGE is used to change and display detailed information of the selected SFR:

Minimon - User Manual

Page 16/41

The upper text field contains the hexadecimal value. Below, all bits and bitfields are displayed as
binary values and can be changed either by double-click or directly by typing in the binary value.

Of course, each SFR can be displayed in one register set just one time, but the same SFR can be
displayed in different register sets. The current provided SFRs are dependent of the selected micro
controller type (see 8.)

Minimon - User Manual

Page 17/41

Menue and Toolbar

The menu provides one alternative way to the command line to execute commands. The most
common commands are part of the toolbar, too.

File

The File Menu contains all file transfer commands like loading and saving as well as the printing
function.

 Load Intel Hex: Loads an Intel Hex File into the Hex editor.
 Save As Intel Hex: Saves current Selection to an Intel Hex file. Alternatively it is possible to

input a memory range directly (start and end address). It is possible to change the output format,
like 20 bit or 32 bit Intel Hex, and the record length in bytes.

 Load Binary File: Load a Binary file into the Hex editor. The start address offset can be set
freely.

 Save Binary File: Saves the current selection into a binary file. At multi-selections, the space
between selections is filled up with a user-defined fill character if needed.

 Print: Prints the current selection as hex (similar to the memory view), assembler code or
ASCII-Text.

 Load preferences: Overrides the current Minimon settings by selecting and loading a different
.ini – File.

 Save preferences: Saves the current Minimon settings into preferences (.ini) file
 Load SFR register set: Loads a SFR register set file (.mrs) into current selection.
 Save SFR register set: Saves the currently displayed SFR set into a register set file (.mrs).

Edit

The Edit Menu provides clipboard, selection and fill capabilities.

 Copy: copies the (first) selection into an internal clipboard buffer (not to the system clipboard !)
 Cut: copies the (first) selection into an internal clipboard buffer and marks selection as unread
 Paste: pastes the clipboard contents into memory, beginning at the cursor position
Remark: Only one closed memory range can be put to the clipboard. If multiple ranges are selected,
only the first selection will be applied.
 Add Selection: adds a selection, given by start address or end address. Applied several times,

mullet-selections are possible (see also 1.3.3)
 Clear all Selections: all selections will be removed, the memory contents are left unchanged.
 Fill Memory: fills the current selection with a constant value (given as hexadecimal number)
 Random Fill: fills the current selection with random values
 Clear Memory: marks all bytes in the current selection as unused

View

The View Menu provide several alternate display options for the current memory selection:

 Word: Displays the current selected memory contents as 16 Bit values.

Minimon - User Manual

Page 18/41

 Long: Displays the current selected memory contents as 32 Bit values.
 Disassemble: Displays current selection as assembler code.

Target

The target menu contains all commands that concern the target hardware.

 Configuration: here the hardware (target) configuration is done. See 8.
 Connect: connects to target and executes all initialisation commands, according to hardware

configuration
 Reconnect: reconnect to an already running monitor.
 Disconnect: disconnects the Minimon front-end from the kernel and closes the Comm port.
 Display Reset Configuration: Displays reset configuration, which was read at the last target

connection
 Download: loads contents of current selection into target memory
 Upload: loads target memory into selection
 Compare: compares target memory with selection (e.g. previous loaded file)
 Relocate Monitor: MiniMon will be relocated to given start address. This is done by copying

itself and jumping to new MiniMon start address.
Remark: the old and the new monitor locations must not overlap.

Settings

This menu concerns the serial interface.

 Interface: Calls the dialog window to change the comm interface parameters.

Changing the values before connection, only the Host settings will be applied (the bootstrap loader
automatically detects baudrate at connection time)
Changing the settings while being connected to the target will change both the host settings and the
MiniMon settings (especially the baudrate).

Minimon - User Manual

Page 19/41

K-LINE is a single wire interface type. For K-LINE, different loader and monitor files are needed
and downloaded. The change of this feature requires a reconnect.

The check connection feature is used to periodically check the connection between the kernel and
the frontend. If the connection is lost, this is shown in the status bar of the Minimon main window.
If the check connection feature is used and a hardware reset is done while beeing connected, a
second hardware reset is neccessary.

While the Value for Timeout can occur during normal communication, the connection timeout
occurs only during connection. The connection start by sending the Zero-Byte can be repeated, the
relevant parameter is the Connect-Retry value.

 Terminal: Sets the output format for received data in the terminal view.

If hex mode is selected, any received Data (e.g. from the application) is displayed in the terminal
view as 8 Bit hexadecimal values. If Text/ASCII mode is selected, received Data is displayed as
ASCII text.

 Kernel: Administrate and activate different default and user kernels

Minimon is delivered with 4 default kernels for C16x and XC16x each:

Minimon - User Manual

Page 20/41

Kernel description Start
address

size

C16X_DEFAULT This is the default kernel for C16x controllers. It provides
the standard features like writing and reading memory,
calling subroutines/drivers, jump to user programs,
software reset and einit

00FA60 392

C16X_KLINE This kernel is the K-Line variant of the C16x default kernel.
It provides the same features as the default kernel, but with
k-line interface communication.

00FA60 394

C16X_FULL The full kernel for the C16x controllers provides
additionally to the default features the movseq capability

00FA60 426

C16X_AUTOBAUD_FULL The autobaud full kernel for the C16x controllers provides
the same features as the full kernel, but additionally with
autobauding on the first connect. This kernel is thought for
integration in user applications to automatically detect the
baudrate.

00FA60 490

XC16X_DEFAULT This is the default kernel for XC16x controllers. It provides
the standard features like writing and reading memory,
calling subroutines/drivers, jump to user programs,
software reset and einit

E00024 392

XC16X_KLINE This kernel is the K-Line variant of the XC16x default
kernel. It provides the same features as the default kernel,
but with k-line interface communication.

E00024 394

XC16X_FULL The full kernel for the XC16x controllers provides all
default features plus the features movseq, asc0 to asc1 and
setprotection

E00024 586

XC16X_AUTOBAUD_FULL The autobaud full kernel for the XC16x controllers provides
the same features as the full kernel, but additionally with
autobauding on the first connect. This kernel is thought for
integration in user applications to automatically detect the
baudrate.

E00024 658

Beside, it is possible to register and activate own user kernels in Minimon.

Administration and Modification of Kernel registration is done in the kernel settings menue.

 Front-End: Change Front-End appearance settings

Minimon - User Manual

Page 21/41

The Front-End settings window is used to change the default settings for different colors of the
memory view. The blank char, which is displayed for unused data areas, can be chosen, too.

Beside these optical appearance settings, it is possible to enable the file logging as well as the
automatic refresh of the SFR view.

Script

The script menu concerns the loading and execution of scripts. It contains the following functions:

 Execute: executes a script file after selecting it in a file menu.
Remark: script files are nothing but text files with a list of shell/script commands (see also 5). These
commands are executed sequentially. On errors the script execution will be stopped.
 User script: assign and name user scripts to up to 8 user script buttons

Any of the 8 Buttons can be named individually. An assignment is removed by deleting the file path

Minimon - User Manual

Page 22/41

 List of the last 16 used scripts: This provides a fast script re-calling functionality

Script example:

_connect
_clearselections
_addselection 10000,1ffff
_upload
_save u1.hex

This script connects to the target, selects the range from 10000-1FFFF, uploads the contents into the
front-end memory and saves it to the Intel Hex file u1.hex

Minimon - User Manual

Page 23/41

Hardware Configuration

The Hardware Configuration is used to describe the target hardware and initialise registers after
connection.

Controller type

Several Controller types can be selected. This information is needed by the front-end to know the
correct SFR and memory definitions.
The clock rate is needed for baudrate initialisation, if the baudrate is changed while being
connected.

Initialize Register

This Section can contain up to 12 SFRs that can be set after connection. The registers can be chosen
freely. The values they are set to are given in the according text fields. A marked register means that
it will be initialized.
Two generic register definitions can be used free for any register known by its physical address.

Initial command calls

Similar to register initialisation, after connection specific command calls can be executed.
If marked, the command EINIT can be executed as final action of initialisation. Remark: EINIT can
be called at any time later by the shell command _einit, too.

Minimon - User Manual

Page 24/41

Memory

This section is used to describe all memory devices or modules that are used.

This includes chip internal memory modules like internal RAM, XRAM, internal Flash or OTP.
Xperipherals and SFR areas are included, too. If the controller type is changed, all default memory
modules of this type can be loaded.

Some modules are possible to activate (or deactivate), therefore the according Line in the Activate
List (A) can be marked by klicking it. A cross (x) will appear.
Some parts (regions) of a module are mapable (e.g. the first sector of internal ROM/Flash/OTP). To
map a region, mark the corresponding Map List line (M).

Of course, all memory unit activations, mappings and entries are used on the next connect .

Map List

Activate List

Minimon - User Manual

Page 25/41

Beside, external devices can be defined, too. Therefore the ADD button has to be klicked and the
Memory Unit Add/Edit window will appear:

In our example an external flash memory device is added to the current memory configuration. It is
necessary to type in the name and select a type first. The blank value is needed to fill unused areas,
because it is possible to program the device blockwise. The programming block size has to be input
as hexadecimal value at Burssize.

Each memory device consists of at least one section. The sections define where the device is
located. Therefore at Sections the ADD button is used to add a section and Startaddress and Length
of the Section have to be typed in as hexadecimal values:

Minimon - User Manual

Page 26/41

If it is necessary to activate the device, several activation registers and masks can be input at the
section Activate. In our example chip select 1 is used, and the registers ADDRSEL1 and
BUSCON1 have to be initialized. The initialization is done by reading the register, applying an
logical OR with the mask and writing it back. Instead of an SFR register, a hexadecimal address can
be typed in, too:

If no activation registers are typed in, the device is seen as always activated.

For programming devices like Flash or Otp, an external Driver is needed. The driver name (Intel
Hex file, including path) has to be typed in at the Path field. To describe the features of the driver
(the implemented functions), they can be added by the ADD button.

If the device is not a programming device (e.g. external Ram), the features Blank, Burstsize and the
section Driver is not used.

Minimon - User Manual

Page 27/41

Views

It is possible to display a selected memory range in different view variants: as assembler code, as 16
Bit values or as 32 Bit values.

View – Disassemble View – Word (16 Bit)

Minimon - User Manual

Page 28/41

Flash Operations

According to the features of the driver (see ch.8), several Flash/OTP operations may be available.

All Operations can be accessed via toolbar:

 Program: Program the current selection into according Flash or OTP memory unit.
The program routine downloads the needed driver, erases automatically the used sections before
writing and programs the selection contents burstwise. Program does detect the according memory
module automatically
 Erase: Erase one sector of the selected flash.

The Erase Sector Window contains a dropdown field where it is possible to select the module (Of
course, MiniMon supports more than one module). According to this module, the sectors are

displayed below. One ore more sectors can be selected. After pressing the OK button the selected
sectors (sections) are erased. In necessary, the driver will be downloaded.

Minimon - User Manual

Page 29/41

 Status: Read all status words from the selected memory module/unit.
 Protect, Unprotect, Lock, Unlock: Similar, but passwords have to be typed in (delimited by a

comma).

Minimon - User Manual

Page 30/41

Shell and Script Commands

COMMAND PARAMETERS DESCRIPTION
_help - displays help message in

status/terminal view

File commands

COMMAND PARAMETERS DESCRIPTION
_load <filename> loads Intel Hex file <Filename> into

host memory
_save <filename>,

<recordsize> optional,
<format> optional

saves selection into Intel hex file
<Filename>

_binload <filename>,
<address offset> optional

loads binary file <Filename> into
host memory, beginning at given
address offset

_binsave <filename>,
<fill char> optional

saves selection into binary file
<Filename>, at fragmented
multiselections fill space with fill
char

Hex Editor commands

COMMAND PARAMETERS DESCRIPTION
_copy - copies selection into clipboard
_cut - cuts selection into clipboard
_paste <start address> pastes clipboard into memory,

beginning at <start address>
_fillmemory <fill value> fills selection with byte or word value

<fill value>
_clearmemory - mark selection bytes as unread
_randomfill - Fills current selection with random

values

Selection commands

COMMAND PARAMETERS DESCRIPTION
_addselection <start address>,

<end address>
adds selection from start address to
end address

_clearselections - removes all selections
_showselections - lists the current selections and their

range

Target Connection commands

COMMAND PARAMETERS DESCRIPTION
_connect NOPROMPT optional connects to target, if parameter

NOPROMPT is passed, no prompt
window is displayed

_reconnect - looks if monitor is ready; can be used
to reconnect

_disconnect - disconnects from target and closes
comm port

Target Transfer commands

COMMAND PARAMETERS DESCRIPTION
_download - downloads selection into target

memory

Minimon - User Manual

Page 31/41

_upload - reads from target memory into
selection

_compare <filename> optional compares selection with target
memory, if filename is passed, results
are written in <Filename>

_mov <address>,
<value>

writes word <Value> to memory at
address or to SFR

_movseq <address 1>,
<data 1>,
<address 2> optional,
<data2> optional,

Several memory writes of
independent data and addresses are
done within one write sequence

Target Execution commands

COMMAND PARAMETERS DESCRIPTION
_srst - executes Software Reset
_jmp <start address> jumps to <Start Address>
_call <start address>,

<R8> optional,
<R9> optional,
<R10> optional,
<R11> optional,
<R12> optional,
<R13> optional,
<R14> optional,
<R15> optional

calls driver/user subroutine at <Start
address>

Target Misc commands

COMMAND PARAMETERS DESCRIPTION
_einit - executes the EINIT command
_movemonitor <start address> moves monitor to <Start address>
_setprotection <security level>,

<password>,
<new password> optional

Enables or disables system register
protection (XC family only)

_pllcon <pllcon value> Sets the register PLLCON (XC
family only). The register PLLCON
can not be set by the standard write
commands, because it possibly
changes the baudrate. Therefore, this
separate command is provided.

SFR View commands

COMMAND PARAMETERS DESCRIPTION
_refreshsfr ON|OFF optional can be used either to refresh values of

SFR registers in current SFR set, or
to generally activate or deactivate the
refresh.

_addsfr <SFR name>,
<SFR set> optional

adds SFR register to current SFR set
or to given SFR set

_removesfr <SFR name>,
<SFR set> optional

removes SFR register from current
SFR set or from given SFR set

Terminal / Comm commands

COMMAND PARAMETERS DESCRIPTION
_send <string>|:<hex values> sends the <send string> to RS232.

Send string can be hexadecimal
values, leaded by a :

_sendfile <filename> sends the binary file <filename> 1:1
to RS232

Minimon - User Manual

Page 32/41

_setp <signal>,
0|1

sets the signal to logical 0 or 1.
Signal can be DTR or RTS

_setbaudrate <baudrate> changes the current interface
baudrate

Logfile commands

COMMAND PARAMETERS DESCRIPTION
_logfile ON|OFF turns the log file writing on or off
_setlogfile <filename> changes the log file to <filename>
_writelogfile <string> writes string to log file

Scripting commands

COMMAND PARAMETERS DESCRIPTION
_delay <delay time> delays for <delay time> seconds
_pause - pauses script execution and displays

message box. Waits for confirmation
(Button OK)

_message <string>|<SFR>|<variable>,
<string>|<SFR>|<variable> optional,
<string>|<SFR>|<variable> optional,
<string>|<SFR>|<variable> optional,
<string>|<SFR>|<variable> optional,
<string>|<SFR>|<variable> optional,
<string>|<SFR>|<variable> optional,
<string>|<SFR>|<variable> optional,
<string>|<SFR>|<variable> optional,
<string>|<SFR>|<variable> optional,
<string>|<SFR>|<variable> optional,
<string>|<SFR>|<variable> optional,
<string>|<SFR>|<variable> optional,
<string>|<SFR>|<variable> optional,
<string>|<SFR>|<variable> optional,
<string>|<SFR>|<variable> optional

pauses script execution and displays
message box with messagestrings1-
16. Waits for confirmation (Button
OK)

_cmessage <string>|<SFR>|<variable>,
<string>|<SFR>|<variable> optional,
<string>|<SFR>|<variable> optional,
<string>|<SFR>|<variable> optional,
<string>|<SFR>|<variable> optional,
<string>|<SFR>|<variable> optional,
<string>|<SFR>|<variable> optional,
<string>|<SFR>|<variable> optional,
<string>|<SFR>|<variable> optional,
<string>|<SFR>|<variable> optional,
<string>|<SFR>|<variable> optional,
<string>|<SFR>|<variable> optional,
<string>|<SFR>|<variable> optional,
<string>|<SFR>|<variable> optional,
<string>|<SFR>|<variable> optional,
<string>|<SFR>|<variable> optional

displays message box with
messagestring1-16, but continues
with script execution. Does not wait
for any confirmation

_assign <expression> assigns a variable an expression.
Valid variable names are %0 to %99.
On the right side of the = either SFR
registers or variables can be assigned.
It is possible to execute simple
arithmetic operations like +,-,*, /,&,|,
~. The value of a variable can be
displayed via the _message or
_cmessage command

_executescript <filename>,<continue> optional Executes the subscript <filename>. If
the flag <continue> is set to ON, the

Minimon - User Manual

Page 33/41

script is continued even if an error
occurs

_quit - Exits Minimon. If used, it is the last
script executed.

Flash commands

COMMAND PARAMETERS DESCRIPTION
_iprogram - Programs the current selection into

flash. The used flash sectors are
erased automatically by this
command before programming.

_program - Programs the current selection into
flash. The used flash sectors have to
be erased manually before
programming.

_erase <device name>,
<sector>

Erases the given <Sector> of the
Flash Device <Device name>

_status <device name> Reads and displays the relevant flash
status registers of the flash device
<Device name>

View commands

COMMAND PARAMETERS DESCRIPTION
_viewword - Views the current selection as 16 Bit

hexadecimal numbers and writes
them to Terminal view as well as log
file

_viewlong - Views the current selection as 32 bit
hexadecimal numbers and writes
them to Terminal view as well as log
file

_viewbyte - Views the current selection as 8 bit
hexadecimal numbers and writes
them to Terminal view as well as log
file

_viewassembler - Views the current selection as
assembler code and writes to
Terminal view as well as log file

_viewsfrs <SFR set> optional Views all SFRs of a given SFR set.
If no SFR set is passed, the current
SFR set is viewed. The output is
done to the terminal view as well as
the log file.

Additionally, it is possible to implement script loops (either finite or infinite). A script (even in a
loop) is aborted on occurance of an error or by pressing ESC.

DO
 <Command>

LOOP [UNTIL <Number>]

Minimon - User Manual

Page 34/41

MiniMon Communication Protocol

(function code)
(acknowledge 1=AAh)
(parameters)
(return parameters)
(acknowledge 2=EAh)

Name Funct.C. Parameters Return Parameters
Write Word 82h 3 Bytes address (LSB first)

2 Bytes value (LSB first)
None

Write Block of Bytes 84h 3 Bytes startaddress (LSB first)
2 Bytes length, (LSB first)
<length> bytes values

None

Read Block of Bytes 85h 3 Bytes startaddress, (LSB first)
2 Bytes length (LSB first)

<length> bytes values

Monitor Ext. Interface*
(Call Subroutine)

9Fh 3 Bytes program start address (LSB f.)
8 Word parameters R8-R15 (LSB f.)

8 Word parameters R8-
R15 (LSB f.)

Simple Go Command 41h 3 Bytes program start address (LSB f.) None
Execute EINIT 31h None None
Execute SWRESET 32h None None
Get Checksum 33h None 1 Word checksum
Test of Communication 93h None None
ASC0 to ASC1 CCh None None
Read Word CDh 3 Bytes startaddress, (LSB first) 2 Bytes value (LSB

first)
Write Word Sequence CEh 3 Bytes buffer start address (LSB f.)

1 Byte buffer length
None

Set protection D1h 1 Byte password
1 Byte new password
1 Byte protection level

None

Minimon - User Manual

Page 35/41

Monitor Extension Interface for User Subroutines/Drivers

Feature/Function R8 Parameters R9-R15 Return Parameters
Program 0h R9..source block length,

R10..source block start address low
R11..source block start address high
R13..destination address low
R14..destination address high

R15..error code

Erase 1h R14..sector number R15..error code
Status 6h R14..status byte number (sector number) R9..status byte,

R15..error code
Protect 20h - R15..error code
Unprotect 21h R9..password length,

R10..password address low,
R11..password address high

R15..error code

Lock 10h R14..sector number R15..error code
Unlock 11h R9..password length,

R10..password address low,
R11..password address high,
R14..sector number

R15..error code

Set Timing 04h R9..programming pulse length code,
R10..max.number of programming pulses
R11..erasing pulse length code
R12..max.number of erasing pulses

Minimon - User Manual

Page 36/41

Memory Management

Minimon follows a fully flexible memory management concept for all microcontroller software
components:

Monitor

The monitor minimon.hex has no absolute memory references (jump, call or data). It uses only
relative Jumps and internal General Purpose Registers (R0-R7). Therefore it is possible to locate the
monitor anywhere in internal or external memory. Of course, it ist possible to write the monitor in
external flash or eprom, too.
The initial start location of the monitor is at 00FA60h for the C16x family and E00024h for the
XC16x family. This location is in internal Ram which is supported by all 16 Bit controllers.
To relocate the monitor, the shell command _relocatemonitor <startaddress> is provided. A menue
command exists, too.

The Relocation of the monitor is done by downloading the monitor code to the new location and
making an absolute jump to the start address. That means: the monitor moves itself. Of course, the
old and the new location must not overlap.

Driver

Like the monitor, all included driver routines for flash/OTP programming have no location
restrictions. They can be located and moved anywhere. By default, they are located in interal Ram
or XRAM, depending on the type capabilities.

Data Exchange

The data exchange between monitor and the driver is done via internal RAM. By default this data
block starts at FC80.

Minimon - User Manual

Page 37/41

Used Resources

One goal of Minimon is to use as less resources as possible. This concerns memory usage for program code, data, stack
and registers.

Kernel

The Minimon kernel is loaded into the internal RAM of the microcontroller.

Minimon is delivered with some kernels for C16x and XC16x – 4 for each type. Due to different controller types and
functionality, they have different locations and sizes. The following table lists the default locations of the Minimon
kernel for each type:

Kernel Size in bytes Start address end address
C16X_DEFAULT 392 00FA60 00FBE7
C16X_KLINE 394 00FA60 00FBE9
C16X_FULL 426 00FA60 00FC09
C16X_AUTOBAUD_FULL 490 00FA60 00FC49
XC16X_DEFAULT 392 E00024 E001AB
XC16X_KLINE 394 E00024 E001AD
XC16X_FULL 586 E00024 E0026D
XC16X_AUTOBAUD_FULL 658 E00024 E002B5

These are the default locations for the kernels. Nevertheless, it is possible to relocate the kernel to a different location.
Of course, the size keeps the same.

Furtherly, the Minimon kernel can be integrated in a user application. In this case, the memory location of the kernel
can differ to the default locations.

Drivers

Drivers do not have a pre-defined location and size. Each driver has different memory needs for program and eventually
data.

Beside the program and data memory space, drivers can use additionally an transfer buffer to exchange data between
the kernel and the driver. Especially flash drivers use such buffers for exchange of the data to be programmed. The
default start location for the buffer is the addresss 00FC80, the default size is 128 bytes.

Registers

Minimon uses only one Register bank. It does not change the register bank location. Therefore, the calling application
has to provide the register bank or take care to save the contents before if needed afterwards. Normally, Minimon uses
the default register bank which is defined by the reset value of CP.

The Minimon kernel uses R0 to R7 for operation. R8 to R15 are used to pass parameters when calling a driver or
subroutine.

Stack

Minimon uses the system stack but no additional user stack. The Minimon kernel itself does not change the stack size
and stack memory location. Therefore, the stack is used as delivered. In the most cases, the default stack settings after
reset are used (reset values).

The System Stack is only used for calling subroutines within the kernel as well as for calling driver routines. No further
push and pop operations are done. The kernel itself needs not more than 16 Bytes.
The stack usage of drivers is not specified and depends on the driver implementation.

Minimon - User Manual

Page 38/41

Connect with the Target monitor

Minimon expects either a 16 Bit Microcontroller (C16x) with a bootstrap loader oder an already
downloaded and running monitor.
If the monitor is already running, a simple reconnect command is used to establish connection.

If not so, the connection of host and target starts by sending a zero byte to the target. The target
determines the baudrate and sends back its ID to the host. Then, 32 bytes loader program is sent
from host to target.
After the receiption of the 32th byte the loader is started and sends the acknowledge
LOADER_STARTED to the host. The loader receives the monitor program. The length of
MiniMon is known by the loader because both loader and minimon are linked together.
Finally, the MiniMon is started and sends the acknowlegde APPLICATION_STARTED to the host.

HOST MINIMON

0

ID-Byte

Loader (32 Bytes)

LOADER_STARTED

APPLICATION STARTED

MiniMon (x Bytes)

BSL

PRELOADER

MINIMON

NORMAL COMMUNICATION

 Remark: Both the loader and the monitor program can be replaced by user programs. Their length
is known by the host because of their hex file contents. So it is possible to adapt the monitor for
individual needs. If adaption is needed, notice that loader and monitor have to be linked together.

Minimon - User Manual

Page 39/41

The target monitor

To keep the monitor small and flexible, the monitor program accepts only a little set of commands,
like write and read memory blocks. These Commands can be used for all other operations, e.g.
initialisation of SFRs, download of user programs or drivers, upload of specific memory blocks and
even monitor relocation. The write and read commands are done bytewise and with Data Page
Pointer 2. The EXTS command is not used because of compatibility reasons to 80C166.
Because in many cases it is not possible to write to SFR registers bytewise without interferring the
other part of the SFR, it is neccessary to provide an wordwise command for writing into SFR
registers.

Initialisation

The Monitor does not any initialisation commands and transfers except the disabling of the
watchdog timer (DISWDT). If needed (e.g. call EINIT or set SYSCON), this can done in the Host
Program (see Menue Target-Configuration). The monitor does not distinguish between initialisation
commands and normal execution or transfers. So it is possible to call the EINIT command at any
time later.

The initialisation of the serial interface is done by the bootstrap loader and is changed by a simple
data transfer command to S0BRS (host intelligence). Therefore no extra command is needed.

Start a user program

To provide the ability of user program starts, it can make an intersegment jump to a given start
address. The intersegment jump is done by pushing Startadress (1 Word Segment and 1 Word
Address) to the stack, and executing a RETS command. RETS pops the previous pushed values as
CSP and IP at the same time.
This ‚jmp‘ command is used by SYSCON initialisation and monitor relocation, too. In both cases,
the jump address is the monitor start address.
For starting applications, a software reset command is provided, too.

Drivers

MiniMon has an extension interface, where any user subroutine can be downloaded and called. This
interface can be used for drivers (e.g. flash programming drivers), but also for user subroutines.
Therefore the host has to download the driver and instruct the monitor to call the driver start
address. The monitor does not know anything about the driver except his start address. Parameters
are passed via Registers R8-R15.
The host software handles the memory organisation of the driver, too. The user subroutine or driver
can be located anywhere in memory, its last command is the RETS command to return to the
monitor.

This concept provides a modular software system that is easy maintainable and adaptable. For
example, the driver subroutines are independent of any communication operation and implement
only the parts that are definitely necessary.

Minimon - User Manual

Page 40/41

External files

All ‚dynamic‘ Data needed by the frontend software is stored in external (text) files. This provides a
high maintainability and makes it possible to fit new microcontroller types.

The following data is stored in external files:

Preferences:

All settings in windows like paths, filenames, save settings, communication settings, the last script
filenames but also the actual target configuration settings can be stored and recalled in preference
files. If minimon is closed, it saves all these settings in the file DEFAULT.INI.
When minimon is launched, DEFAULT.INI is loaded and all settings are done like the program was
closed.
It is possible to create user preference files, too. This can be used to store different hardware
configurations or test tasks separately.

Definition files:

Several definition files exist to meet with high maintainability, especially to integrate new
microcontroller types.

MCTYPES.DAT: This file contains all microcontroller types. A controller type is written in []. For
each type exist a link to the corresponding memory definition file and register definition file.

Example
[C167CR]
REGDEF=SFRDEF\C167CR.SFR
MEMDEF=MEMDEF\C167CR.MEM

KERNEL.DAT: This file contains all kernels currently provided by Minimon.

Example
KERNELNAME(0)=C16X_DEFAULT
LOADERPATH(0)=MCPROG\LOAD.HEX
MINIMONPATH(0)=MCPROG\MINIMON.HEX
FEATURES(0)=RELOCATABLE,WRITEWORD,WRITEBLOCK,READBLOCK,CALL,JMP,EINIT,SWRESET,GE
TCHECKSUM,TEST,READWORD
STARTADDRESS(0)=00FA60
ENDADDRESS(0)=00FBE7
PATCHSTARTADDRESS(0)=00F660

Register Definition file:

For each microcontroller type a SFR definition file exist. This file contains information about all
Special Function Register of the corresponding type, like Name, Bitnames and Address.

The SFR definition files are standardized and maintained by INFINEON. That means, any new
controller is supported by minimon (nearly) automatically.
All register definition files are located in the subdirectory SFRDEF in the actual minimon
application directory.

Memory Definition file:

Minimon - User Manual

Page 41/41

Like the SFR definition files, a for each controller type a description file of all internal memory
regions exist. These files contain information about name, location, size, and type of each internal
‚memory unit‘. For flash/OTP devices, they additionally contain information about driver file
location and driver functionality (driver features).

All memory definition files are located in the subdirectory MEMDEF in the actual minimon
application directory.

