MiniMon

User Manual

(c) 1998-2014 by Christian Perschl

Contents

IIETOAUCTION ..ttt et st b et e bt e et e bt e s bt e bt e bt et e eabesheeshtesb e e bt emb e eabeeatesbbenbeenbeenbeenbesaees 3
FTONIENA OVEIVIBW ...ttt ettt ettt et e a e s bt e bt e bt et e e a bt s bt sht e s bt e bt emb e eateebtesb b e bt ebeenbeenbesaees 4
IMEIMOTY VIEW ..cutintiiniienieeite ittt ettt ettt ettt b ettt et st s bt e e bt et eat e e et e eh b e e bt e bt e bt embeeabeebeeshtesb e e bt embeeateeatesbbe bt e beenbeenbesaees 5
Representation Of MEMOTY COMEIMTS. ...cc.eiutitiitiriieriteteeteette ettt et et e eteetesbtesbeente e bt eateeateebtesbe e bt enbeebesatesaeesbeenbeenseenee 5
Changing the displayed MEMOTY TANZE.......c..cetertterierrierieite et ettt ettt et e st et et ebesatesbtesbeesseenbeesbeestesbaesbeenbeenseessesaees 5
TErMINAL/STATUS VIBW ...eeitiiiiiiiiieieiiee ettt ettt et ettt e sttt e s bt e sab e e sht e e sabeeabt e e sab e e bteesabe e bt e esbeeabte e sbeebaeebteenbeeeseeenbes 7
COMMEANG TINE.....ceutiiiiiiiiieeitte ettt ettt e st esa bt e s a bt e s bt e e sabeeebt e esabeeabteesab e e beeeasee e bt e esbeeabeeesbeebaeensteeabeeeseesanes 8
SER VIEW ..ttt st e s a e st e e at e s a bt e eat e e s ab e e e ab e e s ab e e e at e e s abe e e a bt e s bt e e bt e s beeeabeesbeesabeesabeeeateenas 16
MENUE ANA TOOIDAT......eiiuiiiiiieiiieee ettt ettt e b et e bt e bt e e s ate e bt e e at e e bt e e sabe e bt e esabeeabteesabeenseeesabeenneeas 18
FLE ettt ettt b e e bttt et h e et bt bt h ettt e bbbt eb e e ae et et et et et nes 18
Bt ettt h e bt h e h e a et b et b e e bt e h et ea bt e st e bt nh e eb e e ae et et et e be e bes 18
VIBW ettt ettt s at e s bt e b et ea bt e a e e bt b e e bt e bt a e e ht e S h e e bt et e e Rt e e bt e eh e e bt e bt e s bt et e eh et ebeesbe e bt et e enteeaaenbeens 18
TATZEE .ottt ettt et e a e a e e bbbt et e a e e bt bt e bt e bt e et e h e eht e bt e bt e bt eateehtesbeenbe e bt eateenteeiaenbeens 19
SEILIIIES .ttt ettt ettt e a e eb e e bt e bt e bt et e e st eat e s he e s bt e bt et e ea bt ea bt ekt e bt e bt e bt et e ea bt ehe e sheesb e e bt et eateebbeebaenbeens 19
SCIIPL. ettt ettt b e bbbt et e a e e bt bt e h e et e a bt e et eh e e b e e bt e bt et e ea bt ehe e sh e e bt e bt et eateebbeebaenbeens 22
Hardware CONTIGUIALIONc..eorutiitiiiiiieitteit ettt et ettt b e bt et et sate s bee s bt et e et e eab e sb b e bt e bt e beembesmeesbeesbeenseenee 24
L0103 113 00) |13 Q0 o T O O O OO OO OO OSSOSO PRSP OP PO RPROOPSORPOUPPRUPIPOON 24
TNIHATZE REGISTETeeiiiiiiieeiie ettt ettt et e bt e s ab e e bt e e s at e e bt e e sbbeebteesabeesuteesabeenbteesabeennteesaneeaeeas 24
Initial COMMEANA CALLS.....cooueiiiiiiiieiie ettt ettt e bt e et e bt e e sab e e b bt e sabeesateesabeesateesabeesateesabeenaeeas 24
IMIEINIOTY ...ttt et ettt et et et et e ea e bt et et e aa e s aee s ae e bt et e e et e e aa e e a e e b e e bt e st ean e ean e sae e neenneeateeaneeaneennens 25
VIBWS -ttt ettt ettt ettt ettt ettt ettt ettt bt ettt e bt e e bt e e bt e e bt e e bt e e bt e e bt e e bt e e bt e e bt e e bt e e ehte e bt e e bt e e bt e e ehb e e bt e e shb e e bt e e eabeenbteesabeenateas 28
FIaSh OPETALIONScouviiiiiiiiiiiieiiee ettt ettt et ettt e b et e e e s e s e e st e s et e st esa e easesas e bee bt enseemneeanesaeesaeenneenns 29
Shell and Script COMIMANAS.......cc.eeitieriiiriiiie ittt ettt e e ettt sbtesbee bt e bt eat e e bt e ebsesbe e bt e bt esbeeatesaeesbeenaeenseenee 31
MiniMon CommuniCation PrOtOCOL.......cc..iiiiiiiiiiiiiiie ittt sttt ettt ettt et et s st esaee e e 38
Test of Communication
Monitor Extension Interface for User SUDIOUtINeS/DITVELScc..ceviriirieriiinieiienie ittt ettt ettt st 39
MEMOTY MANAZEIMENLc..eeiiiieeiieitieiteetterttent et ettt sbteste e bt eateeate et e eabe e b eenbeesbesateshtesbeenseemteeabesbaenbae bt enbeeabesatesbeesbeenseenee 40
IMIOMIIEOT .ttt ettt et b e bt et eat et b e bt e bt et e e aae s hte s he e bt et e eat e ea bt eb e e bt e bt em bt embesatesbeenbe e bt et e enteeaaenbeens 40
DIV .ttt ettt e bt e ab e e bt e a bt e bt e e h bt e bt e e h b e e bt e e ehb e e bt e e sh bt e bt e e e hb e e ehteesabeenateesabeenateas 40
Data EXCRANGEcviiiiiiiiieieee ettt st et ettt et e s st a ettt esnnens 40
USEA RESOUICES. ...ttt ettt ettt ettt ettt et ettt e b et e at e e bt e e bt e e b et e bt e e bt e e ate e bt e eateebbeesabe e bt e esabeeabteesabeenbteesabeeneeas 41
KEIMEL ...ttt ettt ettt e et s bt e e ab e e s bt e eab e e s bt e e ab e e s a bt e eabeesabeeeabeesabeeeabeesabeesateenas 41
DDIIVETS ettt ettt ettt e bt e a bt e bt e e s ab e e bt e e s h bt e bt e e a bt e bt e e e bt e e h bt e eh bt e eht e e e a bt e bt e e sabeenateenabeenateas 41
REZISTETS ..ttt ettt ettt e bt e e et e e bt e s ab e e bt e e s ab e e bt e e s bt e e bt e e sabe e b bt e sab e e bt e e e st e e eat e e eabeenateenabeenaeees 41
STACK ettt bbbttt et h e bbbt e Rt e a bbbt e bt e bt et e e st ebt e she e b e e bt et et e ebbeebnenbeens 41
Connect With the Target MOMITOLeouirtirtieieeteete ettt ettt ettt ettt st e s bt et e et e eabesbeesbee bt e bt embesaeesaeesbeenseenee 42
THE TATZEE TTIOMILOT ..cuveiieiiieriteteet ettt ettt ettt bt bt et eat e st eb e eb e e bt e bt e st e sbeesheesbe e bt emt e ebbesbte bt e bt enbeembesmtesaeenbeenseenee 43
TIEEHALESALION ..ottt sttt et ettt b e bt et e bt e st s ate s he e bt et e eat e eb et eb e e bt e bt em bt eabesatesheenbe et e enteenteeanenbeens 43
STATT @ USET PIOZIAIN....ceuteiutiiuieiitentteteete et ettt ettestteste e bt esteeateeatesaeesbeesbeenteenteeateebeeebee bt e bt embeembesbeesbeesbeenbeenteenteesneebnenbaens 43
DDIIVETS ettt ettt e at e e be e a bt e bt e e ab e e bt e e s hb e e bt e e e a bt e bt e e ehb e e bt e e sh bt e bt e e eab e e eht e e sabeenateenabeenaeees 43
EXEETNAL FIIES ...ttt ettt et ettt e b e bt e bt e bt e e bt e e bt e e bt e e a bt e bt e e ehb e e bt e e eab e e bt e e e abe e bt e e sabeenateas 44
PIOIETENCES: ...ttt ettt e at e e bt e s a bt e bt e e s at e e bt e e sbbe e b bt e sab e e eat e e e bt e e nbteesabeenateenabeenateas 44
DEINTON fIES: ...eeineieiiieeee ettt ettt e bt e s a bt e bt e e s bt e e bt e e sbbe e bt e e sabeesateesabeebteesabeennteesabeenaeees 44
Register DefiNItioN fI1E:ooiuiiiiiiiiiiiieee ettt ettt e s bt e bt e sab e e sat e e sabeesbteesabeenateesabeenaeees 44
MemOry Definition fIIE:.......ccooiiiiiiiiii ittt ettt et s ettt ae et et neens 45

MiniMon

User Manual

Introduction

The idea of MiniMon is a tiny monitor program that is started via bootstrap loader to any C16x
XC16x micro controller system. The monitor is initially located in the internal RAM, and therefore
it works on any target hardware (bootstrap loader required), especially single chip applications. It
can be relocated to any address (internal or external memory) at any time. The monitor has only a
few simple commands (read memory, write memory, write word, jump segment...), all intelligence
is provided by the front-end.

The front-end, which runs on Windows 95/98/Me, Windows NT and Windows 2000/XP, provides
several functions:

Hex editor functionality: load, save Intel Hex or binary files, modify, print
Memory transfer functions: download, upload and compare any memory area
Program, erase, (un)lock, (un)protect Flash/OTP/EEPROM areas

View options: view memory as assembler code, 16 Bit or 32 Bit values

Load and start user applications

Call user subroutines

SFR view: display and change SFR values, arranged in several register sets
Terminal function: send and receive any data via RS232

Scripting: A command can be selected either via menu or executed in scripts

The main advantages of Minimon is its compactness, its ability to locate free (without
recompile/link) and its easy memory access functions. It works on a kind of ,,hardware* level and
has (nearly) no access restrictions.

The front-end has a terminal view that shows all data received over the serial interface (e.g. debug
outputs via printf).

The main applications of MiniMon are hex editing, memory dumps, Flash/OTP programming, tests
of micro controller peripherals and external hardware, downloading and starting of user
applications.

Frontend Overview
The front-end of MiniMon consists of 4 parts:

Memory view
Terminal/Status view
SFR view

Command line

Memory View SFR View

%u MiniMon

File Edit View \Target 3Settings Script Help

Fd BAS ¥ oo il = PFEHEEEE®CE

o0 01 ke 03 04 05 06 07 08 09 03 OF OF oD O0F OF 123 vasdl 4 | p|
EO0O00 E6 F7? 80 40 A5 5i A5 A5 E6 F6 70 00 Es 00 80 03 | ziEp¥zvess = £ ADCO_CHETRLE O0EQZE FFFF
Eoonln As 50 3MF5 FD E0 B 31 C% 62 86 Fs E1 01 30 Fa " PLEYA 1EhtaA =a

EQ00Z0 E& F4 %5 40 Ee F7 00 60 ES 74 E1 31 EE 7E EE 6D S eiHRE-. " Talsenn
E00030 FL EO E7 Fl1 A& 00 EE 73 E7 Fl1 EA OO0 47 FE 31 00 | A"cii?.»yené. Gil.

EQ0O040 3D 0F ES 424 BE ES 0D SF 47 FE 33 00 3D 01 0D EE s.ptpp. _Ght.=. L[
EOOOS0 47 FB 3Z 00 3 03 BE 5% B? 48 BY BY 47 FB 33 00 GiZ . =_»i-H--BGa3.
E00O0&0 2D O F1 1& BE &2 E7 Fl1 Ea 00 OD 4D 47 FE 24 00 =_ﬁ.}}b;ﬁé_ MGy, .
EQOO?0 3@+ LE El 0&A BE 77 ER 71 AOQ 03 2D 01 0O 44 EBE 45 =_&.nwmeg .=..DInE
EQOOS80 Fl =20 El AR BE 77 FO Ce OE FC A3 7C 2R Fe 04 00 BEQ noaE. Q0 |54, .
EQOO3%0 e& F7 OO0 FF 71 E2 0D 02 & F? FF 00 71 F2 E2 7C fr Yrgd. £+ ds, |
EQOOQAOQ &A% 34 41 28 3 0Ol 0D E& E7 F1 11 00O 0OIr EE 47 FE B-hv=_ _ach. . AGa
EQOOBO 25 00 30 0D E1 0A BE 56 BEE &0 AO 0OF 3D 0F E7 Fl we=.a.nW2P (= ch
EQOOCO EA OO0 OD 21 BE 57 A9 1& E1 Al EB ZF 0OIr F& 47 FE S VeIlE. Q. G060
EQOODO 41 00 30 05 BE 47 BE 23 EC F: EC F1 DE 00 47 FE A.=.»Ge)idind. cd

I.=.»1»F 6h.». f.

EQOOEOQ CI» 00 3@ 0OA BE 3F BEE 4¢ AS 36 Fl 1¢ EE 1E Fl1 17 «
-

EQOOFO EEB LC EY Fl1 Ei 00 0D 07 £7 FE 22 00 2D 44 BB 2z woghE. .. GA, . =TnE

*Loader file Prepare

*Minimon file Prepare

*zend BEyte 0+ Loader + MinimonCore
*RECEIVE - MC-Identifier: D&
*RECEIVE - Minimon ACE 03 received
*Minimon successiully launched
*Tpload: 2ZE& bytes

[connect =] .| app| REmove | cHance | REFRESH
@ | CONNECTED fND READY COM1-152000.8.] [K-Lm
Terminal/Status View Command Line

The memory view shows the current memory contents as hex values. Of course it is possible to
change the values. The memory area has an ASCII-section, too.

The terminal/status view is used by the front-end to output status and error messages. It is also used
to view received serial data while running an user application.

The command line (below the terminal/status window) is used to give commands to MiniMon (as
text). It can be used to send any bytes or text strings (like a terminal), too.

The SFR view is used to display SFR register contents and to change them. SFR Registers can be
arranged in up to 5 independent Register sets, where 1 set is displayed at a time.

Memory View
Representation of memory contents

It is distinguished between used and unused memory areas. An unused memory byte is viewed as a
blank character (initially a point, can be set by user). Used bytes are displayed as hexadecimal 8 Bit
values.

Besides, the used memory areas can be distinguished further between valid and invalid data. Data
that was just uploaded or (correct) downloaded is valid, changed values or loaded files are
principally invalid, until they are downloaded or programmed.

This means, the target memory area is NOT corresponding 1:1 to the displayed memory contents.
This is caused by the fact that Flash or OTP memory areas can’t be written or changed transparent
and instant.

Valid data is displayed by black hex numbers, invalid data is displayed by red hex numbers (initial
values, can be set by user).

Itvvalid data Cursor Utmsed Data Select current 238
Bwtes
aQ ol 02 0F 04 05 0& 07 g 05 03 ac on aF oF
gla0lo - R - - - - R A - R - - R - -
gla0zo . 01 0z 02 04 05 45 4F5 4 b 4L 45 45 45 45 &) EEEEEEEEEE
010020 45 45 45 45 45 45 45 45 4L 45 45 45 45 EEEEEEEEEEEEEEEE
0lo040 45 45 45 45 45 45 45 45 45 45 45 4L 45 EEEEEEEEEEEEEEEE
- 0l0050 45 45 45 45 45 45 45 45 45 45 45 45 45 EEEEEEEEEEEEEEEE
Direct 0l00s0 45 45 45 45 45 45 4L 4F 4L 4E 45 4L 4F EEEEEEEEEEEEEEEE
Address 010070 45 45 45 45 45 45 4L 45 4L 4E 45 4L 45 EEEEEEEEEEEEEEEE
Input 010080 45 45 45 45 45 45 45 45 45 45 45 45 45 EEEEEEEEEEEEEEEE
0l0020 45 45 45 45 45 45 45 45 45 45 45 45 45 EEEEEEEEEEEEEEEE
0l00a0 45 45 45 45 45 45 45 45 45 00 00 a0 0o EEEEEEEEEEEE. . ..
Ol00EQ OO0 OO0 OO0 00 QO a0 a0 oo L T L 1 O
0100Co 00 00 o0 Q0 go a0 aQ ao a0 00 Qo oo oo
0l00>a 00 00 00 00 oo oo Qo oo a0 00 OO a0 0o
O100EQ OO0 OO0 OO0 00 (00 o0 aod oo oo 00 a0 ao oo =)
Ol00F0 00 00 00 Qo000 a0 ao oo oo 00 a0 ao oo =
Walid data Jelection Seroll Bar ABCI Bector

Changing the displayed memory range

The memory view can display 256 bytes of the memory contents at a time. Initially, the memory
values from address 000000 to O000FF is displayed. If a file is loaded, the first used address is
displayed. To scroll the memory within the current segment, the scroll bar right of the memory
view can be used. To step through the segments, the aligned double arrows can be used.

The second and recommended way to change the displayed memory range is to put the display start
address directly into the white text field in the upper left corner of the memory view (Direct
Address Input).

Scrolling can be applied by the keys PgUp and PgDown, too.

Changing the memory contents

It is possible to change a memory value. Therefore it is necessary to click with the mouse into the
according field and type in the value. To mark a selection as unread, the Del key is used
The arrow keys can be used to move inside the memory view.

Selections

In the memory view, it is possible to select a memory range. Selection is important, because it’s the
base of most commands like upload, download, compare, program, disassemble, fill, unread, copy,
cut , save. All these commands concern the selection.

A simple way to select a memory range is the menu: Choosing Edit / Add selection will ask for
selection start and end address. Nevertheless, it is possible to input the start address and a given
selection size, too:

m. S5elect Hange (- [O] =]

Startaddress

|EI1 0000

Endaddres=

[FiFeeF

Cancel

Ok |

The other way is to make a selection by the cursor. Move to the selection start address, press the
SHIFT key and move to the end address. Any further move of the cursor without pressing SHIFT
will remove all selections.

Nevertheless, a third way exists to make a selection within the current displayed memory range: it
is done by mouse, pressing the left button at the selection start, move to the selection end and
release the button.

Multiselections are done like described above, but additionally it is necessary to press the CTRL
key. Otherwise, any cursor movement will remove all selections.

Clipboard

It is also possible to use the clipboard to copy or move memory contents from one address to
another. Besides, the copy command puts the currently selected memory contents to the Windows
clipboard as text, for documentation issues and to reuse them in other programs.

Therefore, use the menu commands edit-copy, edit-cut, edit-paste. It is also possible to use the
conventional short-keys CTRL-C, CTRL-X and CTRL-V. A third way of using the clipboard are
the shell commands _copy, _cut and _paste.

Terminal/Status view

The terminal/status view displays all MiniMon status and error messages (beginning with *). It also
repeats all shell commands (beginning with >).

*MC-Identifier: D5

*loading LOADER to IRk

*bknowledge 01 [Loader started) recerved

*loading MIMIMOM to IRk

“hcknowledge 03 [Minimon started) received

“Initiate: miniman successully launched

*Rezet Configuration: External Buz enabled

*Reszet Configuration: 16 Bit muliplexed Bus

*Reszet Configuration: [nternal Fom enabled [EAH=1]

*Reset Configuration: “WH# actzs azWHELHE, BHE# acts az WHRHH# [FOH.0=1]
*Reset Configuration: On chip watchdog timer iz dizabled [ROH=0]
*Reszet Configuration: Lengthened ALE zignal

*_ginit

After starting an user program, it displays all data received by the serial interface as hexadecimals
or as ASCII Text (terminal display type can be changed by user).

It is possible to select any text in the terminal view and to copy it to the clipboard.

Double-clicking on an already executed command (leading ,>‘) puts this command to the command
line again.

Command line

The command line is used to input commands. It is an alternative way to the menu and toolbar
giving instructions. Besides, it can be used to send serial data directly, too (e.g. to application).

comimatd line command selector button

: -

_upla
_addzefction 0,100
connegk

cothnatid history

The last commands that were input to the command line are stored and available as command
history. Use the list field to repeat a previously executed command.

Command selector

To see all usable shell/script commands, use the comfortable command selector by pressing the
corresponding button.

*s, Shell Commands x|

_help “
_lnad
_gave
binload
[Binsave
_copy
_cut
_pazte
_fillrernary
_clearmemary
_addselection
_clearselectons
_zhowselections
_canrnect
_reconnect
_dizconnect
o
_download
_upload

_compare ;l

—Uzage

_zave <filename: [<fill characters |

— Degcription

Save zelection to binary file

e _|

In the appearing command selector window, all valid commands are listed, with usage message and
a short description.

Commands

Additionally, all commands can be displayed by the command _HELP. The commands are the same

as used in scripts.

The following commands are accepted:

COMMAND PARAMETERS

DESCRIPTION

_help -

displays help message in
status/terminal view

File commands

COMMAND PARAMETERS DESCRIPTION

_load <filename> loads Intel Hex file <Filename> into
host memory

_save <filename>, saves selection into Intel hex file

<recordsize> optional,
<format> optional

<Filename>. <Recordsize> in bytes,
<format> can be 20 (type 2 records)
or 32 (type 4 records).

_binload <filename>,
<address offset> optional

loads binary file <Filename> into
host memory, beginning at given
address offset

_binsave <filename>,
<fill char> optional

saves selection into binary file
<Filename>, at fragmented
multiselections fill space with fill
char

_loadsre <filename>,

loads SR file <Filename> into host
memory

_savesre <filename>,<recordsize> optional,<format> optional

saves selection into SRE file
<Filename>. <Recordsize> in bytes,
<format> can be 19, 28 or 37.

_setpath <type>,<path>

sets base path <path> for file
operation type <type>.

<type> can be SAVE, LOAD,
SCRIPT or LOG

by default, all types have Minimon
installation path as base path

if full path is provided with an
operation, the base path is ignored

_savex <filename>,<variable>,<recordsize>
optional,<format> optional

Save selection to intel hex file.
Filename is extended by file index
provided by variable

Hex Editor commands

COMMAND PARAMETERS

DESCRIPTION

_copy -

copies selection into clipboard

_cut -

cuts selection into clipboard

_paste <start address>I<variable>

pastes clipboard into memory,
beginning at <start address>

_fillmemory <fill value>l<variable>

fills selection with byte or word value
<fill value>, can be passed as
constant value or variable

_clearmemory -

mark selection bytes as unread

_randomfill -

Fills current selection with random
values

Selection commands

COMMAND

PARAMETERS

DESCRIPTION

_addselection

<start address>I<variable>,
<end address>I<variable>

adds selection from start address to
end address, addresses can be passed
as constants or variables

_clearselections

removes all selections

_showselections

lists the current selections and their
range

_moveselection

<selection index>|<variable>,
<displacement>l<variable>

Shift selection number <selection
index> by <displacement> bytes.
Selection index can also be in
variable, as well as displacement.
Selection index is decimal value

_removeselection

<selection index>|<variable>

Remove selection number <selection
index> from selection, selection
index can also be in variable
Selection index is decimal value

Target Connection commands

COMMAND PARAMETERS DESCRIPTION

_connect NOPROMPT optional connects to target, if parameter
NOPROMPT is passed, no prompt
window is displayed

_reconnect - looks if monitor is ready; can be used
to reconnect

_disconnect - disconnects from target and closes

comm port

Target Transfer commands

COMMAND PARAMETERS DESCRIPTION

_download - downloads selection into target
memory

_upload <selection index>I<variable> optional reads from target memory into
selection. If parameter <selection
index> is passed, only selection with
this index is upload. Selection index
is decimal value

_compare <filename> optional compares selection with target
memory, if filename is passed, results
are written in <Filename>

_mov <address>, writes word <Value> to memory at

<value> address or to SFR

_movseq <address 1>, Several memory writes of

<data 1>, independent data and addresses are
<address 2> optional, done within one write sequence
<data2> optional,

_rl6 <Address>I<variable>[,<variable>] Read a data word from target
memory address, optionally into
variable

_wlé6 <Address>I<variable>,<Data>l<variable> Write a data word to target memory
address

_d16 dump memory address>|<variable>,<target memory Write a data word to from dump

address>I<variable> memory address to target memory
address

_ul6 <target memory address>|<variable>,<dump memory | Write a data word to from target

address>I<variable> memory address to dump memory
address

10

Target Execution commands

COMMAND PARAMETERS DESCRIPTION

_srst - executes Software Reset

_jmp <start address> jumps to <Start Address>

_call <start address>I<variable>, calls driver/user subroutine at <Start
<R8>I<variable> optional, address> and passes optionally
<R9>I<variable> optional, parameters R8-R15. Both start
<R10>I<variable> optional, address and register values can be
<R11>lI<variable> optional, passed as variables as well.
<R12>|<variable> optional,
<R13>I<variable> optional,
<R14>|<variable> optional,
<R15>I<variable> optional

_call <start address>, calls driver/user subroutine at <Start

<R8> optional,

<R9> optional,

<R10> optional,
<R11> optional,
<R12> optional,
<R13> optional,
<R14> optional,
<R15> optional

address>

Target Misc commands

COMMAND PARAMETERS DESCRIPTION
_einit - executes the EINIT command
__movemonitor <start address> moves monitor to <Start address>
_setprotection <security level>, Enables or disables system register
<password>, protection (XC family only)
<new password> optional
_pllcon <pllcon value> Sets the register PLLCON (XC
family only). The register PLLCON
can not be set by the standard write
commands, because it possibly
changes the baudrate. Therefore, this
separate command is provided.
_rstcon <rstcon value> Sets the register RSTCON (C167

family only). The register RSTCON
can not be set by the standard write
commands after EINIT. Therefore,
this separate command is provided.

SFR View commands

COMMAND PARAMETERS DESCRIPTION

_refreshsfr ONIOFF optional can be used either to refresh values of
SER registers in current SFR set, or
to generally activate or deactivate the
refresh.

_addsfr <SFR name>, adds SFR register to current SFR set

<SFR set> optional or to given SFR set
_removes{r <SFR name>, removes SFR register from current

<SFR set> optional

SFR set or from given SFR set

Terminal / Comm commands

COMMAND

PARAMETERS

DESCRIPTION

_send

<string>l:<hex values>

sends the <send string> to RS232.
Send string can be hexadecimal
values, leaded by a :

11

_sendfile <filename> sends the binary file <filename> 1:1

to RS232

_setp <signal>, sets the signal to logical O or 1.

ol Signal can be DTR or RTS

_setbaudrate <baudrate> changes the current interface

baudrate

Logfile commands

COMMAND PARAMETERS DESCRIPTION

_logfile ONIOFFI<variable> turns the log file writing on or off

_setlogfile <filename> changes the log file to <filename>

_writelogfile <string>l<SFR>I<variable>[,<string>I<SFR>|<variable | writes information to log file, can be

> optional...] string, SFR or variable
_print <string>l<SFR>I<variable>[,<string>I<SFR>|<variable | prints information to log window and
> optional...] log file, can be string, SFR or
variable

Scripting commands

COMMAND PARAMETERS DESCRIPTION

_delay <delay time> I<variable> delays for <delay time> seconds, can

be passed as constant or variable

_pause - pauses script execution and displays

message box. Waits for confirmation
(Button OK)

_message <string>|<SFR>I<variable>, pauses script execution and displays
<string>l<SFR>I<variable> message box with messagestrings1-16.
optional,<string>l<SFR>|<variable> | Waits for confirmation (Button OK)
optional,<string>l<SFR>|<variable>
optional,<string>l<SFR>|<variable>
optional,<string>|<SFR>|<variable>
optional,<string>|<SFR>|<variable>
optional,<string>|<SFR>|<variable>
optional,<string>|<SFR>|<variable>
optional,<string>|<SFR>|<variable>
optional,<string>|<SFR>|<variable>
optional,<string>l<SFR>|<variable>
optional,<string>l<SFR>|<variable>
optional,<string>l<SFR>|<variable>
optional,<string>l<SFR>|<variable>
optional,<string>l<SFR>|<variable>
optional

_cmessage <string>|<SFR>I<variable>, displays message box with
<string>|<SFR>I<variable> messagestring1-16, but continues with
optional,<string>|<SFR>|<variable> | script execution. Does not wait for any
optional,<string>|<SFR>|<variable> | confirmation
optional,<string>|<SFR>|<variable>
optional,<string>|<SFR>|<variable>
optional,<string>l<SFR>|<variable>
optional,<string>l<SFR>|<variable>
optional,<string>l<SFR>|<variable>
optional,<string>l<SFR>|<variable>
optional,<string>l<SFR>|<variable>
optional,<string>l<SFR>|<variable>
optional,<string>|<SFR>|<variable>
optional,<string>|<SFR>|<variable>
optional,<string>|<SFR>|<variable>
optional,<string>|<SFR>|<variable>
optional

_assign <expression> assigns a variable an expression. Valid

variable names are %0 to %99. On the

12

right side of the = either SFR registers
or variables can be assigned. It is
possible to execute simple arithmetic
operations like +,-,*, /,&,l, ~. The
value of a variable can be displayed
via the _message or _cmessage
command

additionally, the following special
values can be assigned to a variable:
timer: timer value in 1/100 seconds
rnd8: random number between 0-255
rnd16: random number 0-65535

_executescript <filename>,<continue> optional Executes the subscript <filename>. If
the flag <continue> is set to ON, the
script is continued even if an error
occurs

_quit - Exits Minimon. If used, it is the last
script executed.

_poll <target memory Blocks script execution until word on
address>I<variable>,<data target memory equals expected value
mask>I<variable>,<value>|<variable>

_input <string>,<variable>[,yesno] Display message box and wait for
input of a 24 bit hex value into a
variable. Optionally show yes/no
dialog

_delayms <delay time>|<variable> delays for <delay time> miliseconds.
Alternatively, wait ms given in
variable

Flash commands

Remark: <Device name> is always the name of the memory unit listed in Target-Configuration-Memory.

COMMAND PARAMETERS DESCRIPTION

_iprogram - Programs the current selection into
flash. The used flash sectors are
erased automatically by this
command before programming.

_program - Programs the current selection into
flash. The used flash sectors have to
be erased manually before

programming.
_erase <device name>, Erases the given <Sector> of the
<sector> Flash Device <Device name>
_status <device name> Reads and displays the relevant flash

status registers of the flash device
<Device name>

_protect <device name>, Enables the read/write protection of
<password> flash device, password required
_unprotect <device name>, Removes the read/write protection of
<password> flash device, password required
_lock <device name>, Enables the write protection of flash
<password>, device, password required
<sector> optional
_unlock <device name>, Removes the write protection of flash
<password>, device, password required

<sector> optional

13

_dumpmemecc

<maddr>|<variable>,<dummyrd>l<variable>
optional,<clrstat>l<variable>
optional,<incstep>I<variable> optional

Dumps 16 bit value from target
<maddr> into selection. Starts at
smallest selection address and
increments dump memory address by
16 bits.

If parameter <dummyrd> is provided
with 1, a dummy read is performed
on current dump memory address
before reading from <address>.

If parameter <clrstat> is provided
with 1, a clear status sequence is
executed after reading from
<address>.

If parameter <incstep> is provided, a
different increment of dump memory
address than 16 bits can be used.
XC16x needs 8 byte increment for
64bit data to read each 8bit ECC.
P11 has 16 byte data for each 9bit
ECC.

_dumpmodity <XOR-Mask>I<variable>, 16bit wise data modification within
<AND-Mask>I<variable>, the virtual dump that is selected:
<OR-Mask>l<variable>, #datal6bit:=(((#datal6bit A
<RotateRight>I<variable> optional, XORMask) & ANDMask)l OR-
<incstep>I<variable> optional Mask) >> #Rotate16bitRight

_downloadtoasb - Download data into the flash

assembly buffer from selection.

_loadasb_byte

RNDS8I<data byte>lvariable,<count> optional

Download bytewise data into the
flash assembly buffer, can be random
number, constant value or variable
content.

_loadasb_word

RNDI16l<data byte>lvariable,<count> optional

Download wordwise data into the
flash assembly buffer, can be random
number, constant value or variable
content.

View commands

COMMAND

PARAMETERS

| DESCRIPTION

_viewword

Views the current selection as 16 Bit
hexadecimal numbers and writes
them to Terminal view as well as log
file

_viewlong

Views the current selection as 32 bit
hexadecimal numbers and writes
them to Terminal view as well as log
file

_viewbyte

Views the current selection as 8 bit
hexadecimal numbers and writes
them to Terminal view as well as log
file

_viewassembler

Views the current selection as
assembler code and writes to
Terminal view as well as log file

_viewsfrs

<SFR set> optional

Views all SFRs of a given SFR set.
If no SFR set is passed, the current
SFER set is viewed. The output is
done to the terminal view as well as

14

the log file.

_viewascii <byteswap> Views the current selection as ascii
text and writes to Terminal view as
well as log file.

If <byteswap> is 1, MSB is printed
first

Direct Sending via R§232

While running an user application, it is possible to make user inputs that are sent to the serial
interface. Received data is displayed as hex values.

To send a single byte, input a colon and the hexadecimal value. (e.g. ,,:34* to send the byte 34 hex).

To send an ASCII string, just input the string.
All inputs (commands, hex bytes or strings) have to be terminated by pressing the RETURN key.

15

SFR view

The SFR view can display SFRs, grouped by up to 5 register sets. The list of displayed SFRs is

fully adaptable.

aDC GPTT |gvg |

GPT_CAT
EPT_CRIC
GPT_ID
GPT_PISEL
BPT_TZ
EPT_TZCON
BPT_T:ZIC
BPT_TZ
GPT_T3CON
BPT_TZIC
EPT_Td
EPT_T4C0N
EPT_T4IC
EPT_TE
GPT_TECON
BPT_TEIC
EPT_T&
EPT_TSCON
EPT_TEIC

OOFE4&
OOFF&L
OOFFEG
OOFE4C
OOFE40
OOFF40
OOFF&0
OOFE4z
O0FF4:2
OOFF&E
OOFE44
OOFF44
O0FF&4
OOFE4&
O0FF46
OOFF&E
OOFE4S
OOFF42
OOFF&S

aooon
aooon
aooon
aooon
aooon
aoan
aooon
aoan
aooon
aoan
aooon
aoan
aooon
aoan
aooon
aoon
aooon
aoon
aooon

400 | REMOVE | CHANGE | REFRESH

SFR View

& Special Function Register

abc_CIC
&s0C_COM
A0C_COM1
&s0C_CTRO
a0C_CTH2
A0C_CTH2IM
A0C_DaT
A0C_DAT2
a0C_EIC

oDDHSE] 4
ADDRSELS
ADDRSELE
ADDRSELY
&L TSELOPTH
ALTSELOPTL
ALTSELOPZ
ALTSELOP
ALTSELOP4

=1

Search |

Eancell

Ok |

SFR Add

The name, the physical address and the current value of the SFR are displayed in the list.

e The button ADD is used for adding SFRs to the SFR view.

e Use the REMOVE button to remove the selected SFRs from the SFR view. Multiselections can

be applied.

¢ The Button CHANGE is used to change and display detailed information of the selected SFR:

i, SFR - Change
SYSCOM

oo [Pl RPPfPR

Cancel |

]|

16

The upper text field contains the hexadecimal value. Below, all bits and bitfields are displayed as
binary values and can be changed either by double-click or directly by typing in the binary value.

Of course, each SFR can be displayed in one register set just one time, but the same SFR can be
displayed in different register sets. The current provided SFRs are dependent of the selected micro
controller type (see 8.)

17

Menue and Toolbar

The menu provides one alternative way to the command line to execute commands. The most
common commands are part of the toolbar, too.

File Edit Wiew Target 3ettings 3Scripk Help

=E =ie 8 oo ity o ©EE= == D] mmEm =
File

The File Menu contains all file transfer commands like loading and saving as well as the printing
function.

e [.oad: Loads an Intel Hex file or SRE file into the Hex editor.
Save As: Saves current selection to an Intel Hex or SRE file file. Alternatively it is possible to
input a memory range directly (start and end address). It is possible to change the output format,
like 20 bit or 32 bit Intel Hex, and the record length in bytes.

¢ Load Binary File: Load a Binary file into the Hex editor. The start address offset can be set
freely.

e Save Binary File: Saves the current selection into a binary file. At multi-selections, the space
between selections is filled up with a user-defined fill character if needed.

e Print: Prints the current selection as hex (similar to the memory view), assembler code or
ASCII-Text.

® Load preferences: Overrides the current Minimon settings by selecting and loading a different
.ni — File.

e Save preferences: Saves the current Minimon settings into preferences (.ini) file
Load SFR register set: Loads a SFR register set file (.mrs) into current selection.

e Save SFR register set: Saves the currently displayed SFR set into a register set file (.mrs).

Edit
The Edit Menu provides clipboard, selection and fill capabilities.

e Copy: copies the (first) selection into an internal clipboard buffer (not to the system clipboard !)

e (ut: copies the (first) selection into an internal clipboard buffer and marks selection as unread

e Paste: pastes the clipboard contents into memory, beginning at the cursor position

Remark: Only one closed memory range can be put to the clipboard. If multiple ranges are selected,

only the first selection will be applied.

e Add Selection: adds a selection, given by start address or end address. Applied several times,
mullet-selections are possible (see also 1.3.3)

e (lear all Selections: all selections will be removed, the memory contents are left unchanged.
¢ Fill Memory: fills the current selection with a constant value (given as hexadecimal number)
e Random Fill: fills the current selection with random values

e (lear Memory: marks all bytes in the current selection as unused

View

The View Menu provide several alternate display options for the current memory selection:

e Word: Displays the current selected memory contents as 16 Bit values.

18

® Long: Displays the current selected memory contents as 32 Bit values.
¢ Disassemble: Displays current selection as assembler code.

Target

The target menu contains all commands that concern the target hardware.

¢ (Configuration: here the hardware (target) configuration is done. See 8.
Connect: connects to target and executes all initialisation commands, according to hardware
configuration
Reconnect: reconnect to an already running monitor.
¢ Disconnect: disconnects the Minimon front-end from the kernel and closes the Comm port.
Display Reset Configuration: Displays reset configuration, which was read at the last target
connection
Download: loads contents of current selection into target memory
Upload: loads target memory into selection
Compare: compares target memory with selection (e.g. previous loaded file)
Relocate Monitor: MiniMon will be relocated to given start address. This is done by copying
itself and jumping to new MiniMon start address.
Remark: the old and the new monitor locations must not overlap.

Settings
This menu concerns the serial interface.

¢ Interface: Calls the dialog window to change the comm interface parameters.

Communication Settings

Port - Data Bits IE! Bit "I
Baudrate 19200 - Stop Bits I‘I TI

Farity none = [~ FKLINE
Check
Timeatt 2000 i o Enzﬁectinn

Connect-Timeout |100 ms

LRNS

Connect-Retnez |10 M

Cancel | 0k,

Changing the values before connection, only the Host settings will be applied (the bootstrap loader
automatically detects baudrate at connection time)

Changing the settings while being connected to the target will change both the host settings and the
MiniMon settings (especially the baudrate).

19

K-LINE is a single wire interface type. For K-LINE, different loader and monitor files are needed
and downloaded. The change of this feature requires a reconnect.

The check connection feature is used to periodically check the connection between the kernel and
the frontend. If the connection is lost, this is shown in the status bar of the Minimon main window.
If the check connection feature is used and a hardware reset is done while beeing connected, a
second hardware reset is neccessary.

While the Value for Timeout can occur during normal communication, the connection timeout
occurs only during connection. The connection start by sending the Zero-Byte can be repeated, the
relevant parameter is the Connect-Retry value.

e Terminal: Sets the output format for received data in the terminal view.

%%, Terminal Settings -0l |

Terminal Mode

" Text Mode [A5C)

Cancel | (]

If hex mode is selected, any received Data (e.g. from the application) is displayed in the terminal
view as 8 Bit hexadecimal values. If Text/ASCII mode is selected, received Data is displayed as
ASCII text.

= Kernel: Administrate and activate different default and user kernels

% Kernel
C1hx DEFAULT FMCPROGWINIMON HE >, MCPROGYLOAD HEX Add
C1Ex_KLIMNE FCPROGWINIRONE HEX FMCPROGVLOADK.HEX
C1E=_FULL FMCPROGYMINIMOMF. HEX MCPROG\LOADF.HEX Edit
C1Ex_AUTOBALD_FULL FMCPROGWIMIMOMAF HES MCPROG\LOADAF.HEX

Y HKCTEX_DEFAULT =CFPROGWCRMINIMON HEX HCPROGYWSCLOAD HEX

HKCTEX_KLINE HKCPROGYSCMINIMONK HEX =CPROGYWCLOADK. HEX Femove
HKCTEx_FULL RKCPROGYS<CMINIMOMNF HEX HXCPROGYWCLOADF.HES

XC1EX_AUTOBAUD_FULL HCPROGWCMINIMOMNAF HEX XCPROGWCLOADAF HEX

Activate

Ll

0K,

Minimon is delivered with 4 default kernels for C16x and XC16x each:

20

Kernel

description

Start
address

size

C16X_DEFAULT

This is the default kernel for C16x controllers. It provides
the standard features like writing and reading memory,
calling subroutines/drivers, jump to user programs,
software reset and einit

00FA60

392

C16X_KLINE

This kernel is the K-Line variant of the C16x default kernel.
It provides the same features as the default kernel, but with
k-line interface communication.

00FA60

394

C16X_FULL

The full kernel for the C16x controllers provides
additionally to the default features the movseq capability

00FA60

426

C16X_AUTOBAUD_FULL

The autobaud full kernel for the C16x controllers provides
the same features as the full kernel, but additionally with
autobauding on the first connect. This kernel is thought for
integration in user applications to automatically detect the
baudrate.

00FA60

490

XC16X_DEFAULT

This is the default kernel for XC16x controllers. It provides
the standard features like writing and reading memory,
calling subroutines/drivers, jump to user programs,
software reset and einit

E00024

392

XC16X_KLINE

This kernel is the K-Line variant of the XC16x default
kernel. It provides the same features as the default kernel,
but with k-line interface communication.

E00024

394

XC16X_FULL

The full kernel for the XC16x controllers provides all
default features plus the features movseq, ascO to ascl and
setprotection

E00024

586

XC16X_AUTOBAUD_FULL

The autobaud full kernel for the XC16x controllers provides
the same features as the full kernel, but additionally with
autobauding on the first connect. This kernel is thought for
integration in user applications to automatically detect the
baudrate.

E00024

658

Beside, it is possible to register and activate own user kernels in Minimon.

Administration and Modification of Kernel registration is done in the kernel settings menue.

= Front-End: Change Front-End appearance settings

21

i Frontend Settings E|

Switches

[Enable Log File
[v FRefrezsh SFR Window

Colors

Selection |DDDDOD [|
Backgiound [FFFFFF []
Valid ooooo
Invalid oooore [
Monitor o777 [

Blark Char |,
Scale Factar 100 %
Cancel ‘]9

The Front-End settings window is used to change the default settings for different colors of the
memory view. The blank char, which is displayed for unused data areas, can be chosen, too.
Since Minimon v.2.4.0 it is possible to set the frontend scaling to enlarge the Frontend windows.

Beside these optical appearance settings, it is possible to enable the file logging as well as the
automatic refresh of the SFR view.

Script

The script menu concerns the loading and execution of scripts. It contains the following functions:

e Execute: executes a script file after selecting it in a file menu.

Remark: script files are nothing but text files with a list of shell/script commands (see also 5). These

commands are executed sequentially. On errors the script execution will be stopped.
e User script: assign and name user scripts to up to 8 user script buttons

22

%4, Assign User Scripts x|

Button Name File:

ftest scm | Aot SCRIPT S4test som .| EoiT |
@l {mair. zcm | Aot SCRIPT S4main, som .| EoiT |
[program. sem [\minimon\ SCRIPT S\program. scm .| EoiT |
[Uploadi.scm [d:\minimon\ SCRIPT 4 pload1 .scm .| EDiT |
[flash.scm [d:\minimon\SCRIPT S4flash1.scm _EDIT |

jul I | e |
m | ! | i
Jul | | o]

Cancel | (] |

Any of the 8 Buttons can be named individually. An assignment is removed by deleting the file path

e List of the last 16 used scripts: This provides a fast script re-calling functionality

Script example:

_connect

_clearselections
_addselection 10000,1ffff
_upload

_save ul.hex

This script connects to the target, selects the range from 10000-1FFFF, uploads the contents into the
front-end memory and saves it to the Intel Hex file ul.hex

23

Hardware Configuration

The Hardware Configuration is used to describe the target hardware and initialise registers after
connection.

x
— Initialize regizter — Controller type
™ ISYSEDND j I h IKE'IE?EIJEFF j Clk. rate |2EIEIEIEIEIEIEI Hz
¥ |SYSCONT = h
— beman
¥ |SYSCONS =l h
A M
v IHSTEDN j I h H SFR :00FEQO-O0FFFF Add
|7 IEBCMDDD j I h X ESFL -0OF000-00F1FF
® DUALPORTEAM -00F&00-00FLFF Edi
v - h ® PSEAM :E00000-EQO7FF
v |EBCMODA :
® DATASDAM :00CO00-00CFFF
v |T':E'N':5':' = | h b TCAN :Z00000-2007FF Remave |
v IFEDNESEI jl h ® PROGEAMFLASH -COO000-COLFFF
:COZ000-COZFFF
v |TI:EINES1 | | h :CO04000-COSFFF
:C0E000-CO7FEFF
vl |FI:EINI:S1 | | h - COE000-COFFFR
o |TI:EINE52 j I . :C010000-CLFFEF
[|FCONCSZ = h
Addr — Initial command calls
WV Generic 1 |nan1 h |IZIIZIEIZIEIE h g
[~ Generic 2 I h I h
Clear | Cancel (]
Controller type

Several Controller types can be selected. This information is needed by the front-end to know the
correct SFR and memory definitions.

The clock rate is needed for baudrate initialisation, if the baudrate is changed while being
connected.

Initialize Register

This Section can contain up to 12 SFRs that can be set after connection. The registers can be chosen
freely. The values they are set to are given in the according text fields. A marked register means that
it will be initialized.

Two generic register definitions can be used free for any register known by its physical address.
Initial command calls

Similar to register initialisation, after connection specific command calls can be executed.

If marked, the command EINIT can be executed as final action of initialisation. Remark: EINIT can
be called at any time later by the shell command _einit, too.

24

Memory

This section is used to describe all memory devices or modules that are used.

— keman
A M
W SFL :00FEO0-OOFFFF a Add
% ESFL :00FOO0-00FLFF ||
¥ TDAN - 00F&00-00FDFF :
Map List w |xnan - 00E000-00E7?FF Edit
CAN :00EFO0-00EFFF
CANE :00EE00-OOEEFF Remove
% HDAME :00C000-00D7FF _—
bl DATAFLAEH - 002000-002FFF
¥ | |PROCRAMFLASH :0l0000-OLl3FFF
:014000-015FFF
:015000-017FFF
Activate List :018000-01FFFF
-020000-027FFF 7|

This includes chip internal memory modules like internal RAM, XRAM, internal Flash or OTP.
Xperipherals and SFR areas are included, too. If the controller type is changed, all default memory
modules of this type can be loaded.

Some modules are possible to activate (or deactivate), therefore the according Line in the Activate
List (A) can be marked by klicking it. A cross (x) will appear.

Some parts (regions) of a module are mapable (e.g. the first sector of internal ROM/Flash/OTP). To
map a region, mark the corresponding Map List line (M).

Of course, all memory unit activations, mappings and entries are used on the next connect .

25

Beside, external devices can be defined, too. Therefore the ADD button has to be klicked and the
Memory Unit Add/Edit window will appear:

o Memary units x|

— General — Activate

Mame |F'F|DGFH-\MFL.&SH Add

Twpe [IFLASH =l Remove |
Blank ||:||:| h
Burstsize Inngn h

— Sechons — Diriseer
Section 0:C00000 - COTFFF Add Fath |DHNEH'~><E1 E1Ew<Cl . |
Section 1:C02000 - CO3FFF
Section 2:C04000 - COSFFF =
Section 3:C0B000 - CO7FFF ﬂl Features [PROGRAM
Section 4:C08000 - COFFFF o ER&SE
Section 5:C10000 - CIFFFF STATUS
Hemu:uvel
Mode b emtaol j
Minirnom

In our example an external flash memory device is added to the current memory configuration. It is
necessary to type in the name and select a type first. The blank value is needed to fill unused areas,
because it is possible to program the device blockwise. The programming block size has to be input
as hexadecimal value at Burssize.

im. New Section/Begion (- [O] =]

Start Address ||:|
Lenath |1 0000

— Mapping

Start Addreszs

Fegister
Cancel |
kap Magk I

Each memory device consists of at least one section. The sections define where the device is
located. Therefore at Sections the ADD button is used to add a section and Startaddress and Length
of the Section have to be typed in as hexadecimal values:

[\

6

If it is necessary to activate the device, several activation registers and masks can be input at the
section Activate. In our example chip select 1 is used, and the registers ADDRSELI and
BUSCONTI have to be initialized. The initialization is done by reading the register, applying an
logical OR with the mask and writing it back. Instead of an SFR register, a hexadecimal address can
be typed in, too:

i, Add Activation Begister [lj[=] [E3

Fegister Mame

[or Addresz]
Activate Maszk |[|4£.H

Cancel | k. |

If no activation registers are typed in, the device is seen as always activated.

[BUSCOMT

For programming devices like Flash or Otp, an external Driver is needed. The driver name (Intel
Hex file, including path) has to be typed in at the Path field. To describe the features of the driver
(the implemented functions), they can be added by the ADD button.

If the device is not a programming device (e.g. external Ram), the features Blank, Burstsize and the
section Driver is not used.

27

Views

It is possible to display a selected memory range in different view variants: as assembler code, as 16
Bit values or as 32 Bit values.

OOF&00- MOV # EOO0z4: EALE
OOFE0Z: EXTR £1 EQOQEE: ALAL
00F&04: MOV DFP1L, £00FF EQO0NEs: 286E
OOFE08: MOV P1L, #0001 EOO0ZA: B77E
OOF&0C: CALLE F&l® EOOOZC: BE7E
B |ooFenE: Mow P1L, #0004 EOO0ZE: 31E1l
00FElZ: MOV P1L, #0005 EOO0Z0: E7EE
OOF5l&: RETE EOOOZZ: AODL
OOF&18: MOV P1L, #0002 EOD0Z4: ELEE
OOF&1C: MOV P1L, £0003 EOD0ZE: FEFF
QOF&Z0: RET EOO0Z8: CE7E

E0002A: C17E

JTR TR T T B T T8 5 T B B B B 75 B 05 25 75 T 75 B 5 T 05 8 5 T 5 T T8 B T

STEF | GO "

View — Disassemble View — Word (16 Bit)

28

Flash Operations

According to the features of the driver (see ch.8), several Flash/OTP operations may be available.

juljuljo/Rycijolicijol

All Operations can be accessed via toolbar:

e Program: Program the current selection into according Flash or OTP memory unit.

The program routine downloads the needed driver, erases automatically the used sections before
writing and programs the selection contents burstwise. Program does detect the according memory
module automatically

¢ Erase: Erase one sector of the selected flash.

i, Erase Sector M= E3

|PROGRAMFLASH |

Section 0:010000 - 013FFF
Section 1:014000 - 15FFF
Section 2:016000 - 017FFF
Section 3:0138000 - TFFFF
Section 4:020000 - 027FFF
Section 5022000 - 02FFFF
Section 6:030000 - 037FFF
Section 7:032000 - 03FFFF
Section 3:040000 - 047FFF
Section 3:043000 - 04FFFF

Cancel |

The Erase Sector Window contains a dropdown field where it is possible to select the module (Of
course, MiniMon supports more than one module). According to this module, the sectors are
displayed below. One ore more sectors can be selected. After pressing the OK button the selected
sectors (sections) are erased. In necessary, the driver will be downloaded.

e Status: Read all status words from the selected memory module/unit.

29

1=

PROGRAMFLASH

Statuswaord 0 FSR=0300
Statusward 1: PROCON=0000
Statusword 2: RESERWVED=1E5E
Statusword 3 MAR=0000
Statusward 4 IMBCTR=0009

Caricel | k.

e Protect, Unprotect, Lock, Unlock: Similar, but a textual password has to be typed in.

: £04000 - COSFFF

COe000 - CO7FFF

Co3000 - COFFFF

Section 5 C10000 - C1FFFF

Paszwiard ISecret

Cancel |]

30

Shell and Script Commands

COMMAND PARAMETERS DESCRIPTION
_help - displays help message in
status/terminal view
File commands
COMMAND PARAMETERS DESCRIPTION
_load <filename> loads Intel Hex file <Filename> into
host memory
_save <filename>, saves selection into Intel hex file
<recordsize> optional, <Filename>. <Recordsize> in bytes,
<format> optional <format> can be 20 (type 2 records)
or 32 (type 4 records).
_binload <filename>, loads binary file <Filename> into
<address offset> optional host memory, beginning at given
address offset
_binsave <filename>, saves selection into binary file
<fill char> optional <Filename>, at fragmented
multiselections fill space with fill
char
_loadsre <filename>, loads SR file <Filename> into host
memory
_savesre <filename>,<recordsize> optional,<format> optional saves selection into SRE file
<Filename>. <Recordsize> in bytes,
<format> can be 19, 28 or 37.
_setpath <type>,<path> sets base path <path> for file
operation type <type>.
<type> can be SAVE, LOAD,
SCRIPT or LOG
by default, all types have Minimon
installation path as base path
if full path is provided with an
operation, the base path is ignored
_savex <filename>,<variable>,<recordsize> Save selection to intel hex file.
optional,<format> optional Filename is extended by file index
provided by variable
Hex Editor commands
COMMAND PARAMETERS DESCRIPTION
_copy - copies selection into clipboard
_cut - cuts selection into clipboard
_paste <start address>|<variable> pastes clipboard into memory,
beginning at <start address>
_fillmemory <fill value>|<variable> fills selection with byte or word value
<fill value>, can be passed as
constant value or variable
_clearmemory - mark selection bytes as unread
_randomfill - Fills current selection with random
values

Selection commands

COMMAND PARAMETERS DESCRIPTION
_addselection <start address>I<variable>, adds selection from start address to
<end address>I<variable> end address, addresses can be passed
as constants or variables
_clearselections - removes all selections

31

_showselections

lists the current selections and their
range

_moveselection

<selection index>|<variable>,
<displacement>I<variable>

Shift selection number <selection
index> by <displacement> bytes.
Selection index can also be in
variable, as well as displacement.
Selection index is decimal value

_removeselection

<selection index>|<variable>

Remove selection number <selection
index> from selection, selection
index can also be in variable
Selection index is decimal value

_moveselection

<selection index>|<variable>,
<displacement>l<variable>

Shift selection number <selection
index> by <displacement> bytes.
Selection index can also be in

variable, as well as displacement

_removeselection

<selection index>|<variable>

Remove selection number <selection
index> from selection, selection
index can also be in variable

Target Connection commands

COMMAND PARAMETERS DESCRIPTION

_connect NOPROMPT optional connects to target, if parameter
NOPROMPT is passed, no prompt
window is displayed

_reconnect - looks if monitor is ready; can be used
to reconnect

_disconnect - disconnects from target and closes

comm port

Target Transfer commands

COMMAND PARAMETERS DESCRIPTION

_download - downloads selection into target
memory

_upload <selection index>I<variable> optional reads from target memory into
selection. If parameter <selection
index> is passed, only selection with
this index is upload. Selection index
is decimal value

_upload <selection index>I<variable> optional reads from target memory into
selection. If parameter <selection
index> is passed, only selection with
this index is upload. Selection index
is decimal value

_compare <filename> optional compares selection with target
memory, if filename is passed, results
are written in <Filename>

_mov <address>, writes word <Value> to memory at

<value> address or to SFR

_movseq <address 1>, Several memory writes of

<data 1>, independent data and addresses are
<address 2> optional, done within one write sequence
<data2> optional,

_rl6 <Address>|<variable>[,<variable>] Read a data word from target
memory address, optionally into
variable

_wl6 <Address>I<variable>,<Data>I<variable> Write a data word to target memory
address

_dl16 dump memory address>I<variable>,<target memory Write a data word to from dump

address>I<variable>

memory address to target memory
address

32

_ulé6

<target memory address>|<variable>,<dump memory
address>I<variable>

Write a data word to from target
memory address to dump memory
address

Target Execution commands

COMMAND PARAMETERS DESCRIPTION

_srst - executes Software Reset

_jmp <start address> jumps to <Start Address>

_call <start address>I<variable>, calls driver/user subroutine at <Start

<R8>I<variable> optional,

<R9>I<variable> optional,

<R10>I<variable> optional,
<R1I>I<variable> optional,
<R12>|<variable> optional,
<R13>I<variable> optional,
<R14>|<variable> optional,
<R15>I<variable> optional

address> and passes optionally
parameters R8-R15. Both start
address and register values can be
passed as variables as well.

Target Misc commands

COMMAND PARAMETERS DESCRIPTION
_einit - executes the EINIT command
__movemonitor <start address> moves monitor to <Start address>
_setprotection <security level>, Enables or disables system register
<password>, protection (XC family only)
<new password> optional
_pllcon <pllcon value> Sets the register PLLCON (XC
family only). The register PLLCON
can not be set by the standard write
commands, because it possibly
changes the baudrate. Therefore, this
separate command is provided.
_rstcon <rstcon value> Sets the register RSTCON (C167

family only). The register RSTCON
can not be set by the standard write
commands after EINIT. Therefore,
this separate command is provided.

SFR View commands

COMMAND PARAMETERS DESCRIPTION

_refreshsfr ONIOFF optional can be used either to refresh values of
SER registers in current SFR set, or
to generally activate or deactivate the
refresh.

_addsfr <SFR name>, adds SFR register to current SFR set

<SFR set> optional or to given SFR set
_removesfr <SFR name>, removes SFR register from current

<SFR set> optional

SER set or from given SFR set

Terminal / Comm commands

COMMAND PARAMETERS DESCRIPTION

_send <string>l:<hex values> sends the <send string> to RS232.
Send string can be hexadecimal
values, leaded by a :

_sendfile <filename> sends the binary file <filename> 1:1
to RS232

_setp <signal>, sets the signal to logical O or 1.

ol Signal can be DTR or RTS
_setbaudrate <baudrate> changes the current interface

33

| baudrate

Logfile commands

COMMAND PARAMETERS DESCRIPTION

_logfile ONIOFFI<variable> turns the log file writing on or off

_setlogfile <filename> changes the log file to <filename>

_writelogfile <string>|<SFR>I<variable>[,<string>I<SFR>|<variable | writes information to log file, can be

> optional...] string, SFR or variable
_print <string>|<SFR>I<variable>[,<string>I<SFR>|<variable | prints information to log window and
> optional...] log file, can be string, SFR or
variable

Scripting commands

COMMAND PARAMETERS DESCRIPTION

_delay <delay time> |<variable> delays for <delay time> seconds, can

be passed as constant or variable

_pause - pauses script execution and displays

message box. Waits for confirmation
(Button OK)

_message <string>|<SFR>I<variable>, pauses script execution and displays
<string>|<SFR>I<variable> message box with messagestrings1-16.
optional,<string>l<SFR>|<variable> | Waits for confirmation (Button OK)
optional,<string>l<SFR>|<variable>
optional,<string>l<SFR>|<variable>
optional,<string>l<SFR>|<variable>
optional,<string>l<SFR>|<variable>
optional,<string>l<SFR>|<variable>
optional,<string>|<SFR>|<variable>
optional,<string>|<SFR>|<variable>
optional,<string>|<SFR>|<variable>
optional,<string>|<SFR>|<variable>
optional,<string>|<SFR>|<variable>
optional,<string>|<SFR>|<variable>
optional,<string>l<SFR>|<variable>
optional,<string>l<SFR>|<variable>
optional

_cmessage <string>|<SFR>I<variable>, displays message box with
<string>|<SFR>I<variable> messagestring1-16, but continues with
optional,<string>l<SFR>|<variable> | script execution. Does not wait for any
optional,<string>|<SFR>|<variable> | confirmation
optional,<string>|<SFR>|<variable>
optional,<string>|<SFR>|<variable>
optional,<string>|<SFR>|<variable>
optional,<string>|<SFR>|<variable>
optional,<string>|<SFR>|<variable>
optional,<string>l<SFR>|<variable>
optional,<string>l<SFR>|<variable>
optional,<string>l<SFR>|<variable>
optional,<string>l<SFR>|<variable>
optional,<string>l<SFR>|<variable>
optional,<string>l<SFR>|<variable>
optional,<string>|<SFR>|<variable>
optional

_assign <expression> assigns a variable an expression. Valid

variable names are %0 to %99. On the
right side of the = either SFR registers
or variables can be assigned. It is
possible to execute simple arithmetic
operations like +,-,*, /,&,l, ~. The
value of a variable can be displayed

34

via the _message or _cmessage
command

additionally, the following special
values can be assigned to a variable:
timer: timer value in 1/100 seconds
rnd8: random number between 0-255
rnd16: random number 0-65535

_executescript <filename>,<continue> optional Executes the subscript <filename>. If
the flag <continue> is set to ON, the
script is continued even if an error
occurs

_quit - Exits Minimon. If used, it is the last
script executed.

_poll <target memory Blocks script execution until word on
address>I<variable>,<data target memory equals expected value
mask>|<variable>,<value>|<variable>

_input <string>,<variable>[,yesno] Display message box and wait for
input of a 24 bit hex value into a
variable. Optionally show yes/no
dialog

_delayms <delay time>I<variable> delays for <delay time> miliseconds.

Alternatively, wait ms given in
variable

Flash commands

Remark: <Device name> is always the name of the memory unit listed in Target-Configuration-Memory.

COMMAND PARAMETERS DESCRIPTION
_iprogram - Programs the current selection into
flash. The used flash sectors are
erased automatically by this
command before programming.
_program - Programs the current selection into
flash. The used flash sectors have to
be erased manually before
programming.
_erase <device name>, Erases the given <Sector> of the
<sector> Flash Device <Device name>
_status <device name> Reads and displays the relevant flash
status registers of the flash device
<Device name>
_protect <device name>, Enables the read/write protection of
<password> flash device, password required
_unprotect <device name>, Removes the read/write protection of
<password> flash device, password required
_lock <device name>, Enables the write protection of flash
<password>, device, password required
<sector> optional
_unlock <device name>, Removes the write protection of flash
<password>, device, password required
<sector> optional
_dumpmemecc <maddr>I<variable>,<dummyrd>I<variable> Dumps 16 bit value from target

optional,<clrstat>|<variable>
optional,<incstep>I<variable> optional

<maddr> into selection. Starts at
smallest selection address and
increments dump memory address by
16 bits.

35

If parameter <dummyrd> is provided
with 1, a dummy read is performed
on current dump memory address
before reading from <address>.

If parameter <clrstat> is provided
with 1, a clear status sequence is
executed after reading from
<address>.

If parameter <incstep> is provided, a
different increment of dump memory
address than 16 bits can be used.
XC16x needs 8 byte increment for
64bit data to read each 8bit ECC.
P11 has 16 byte data for each 9bit
ECC.

_dumpmodity <XOR-Mask>I<variable>, 16bit wise data modification within
<AND-Mask>I<variable>, the virtual dump that is selected:
<OR-Mask>l<variable>, #datal6bit:=(((#datal6bit A
<RotateRight>I<variable> optional, XORMask) & ANDMask)l OR-
<incstep>I<variable> optional Mask) >> #Rotate16bitRight

_downloadtoasb - Download data into the flash

assembly buffer from selection.

_loadasb_byte

RNDS8I<data byte>lvariable,<count> optional

Download bytewise data into the
flash assembly buffer, can be random
number, constant value or variable
content.

_loadasb_word

RNDI16l<data byte>|variable,<count> optional

Download wordwise data into the
flash assembly buffer, can be random
number, constant value or variable
content.

View commands

COMMAND

PARAMETERS

| DESCRIPTION

_viewword

Views the current selection as 16 Bit
hexadecimal numbers and writes
them to Terminal view as well as log
file

_viewlong

Views the current selection as 32 bit
hexadecimal numbers and writes
them to Terminal view as well as log
file

_viewbyte

Views the current selection as 8 bit
hexadecimal numbers and writes
them to Terminal view as well as log
file

_viewassembler

Views the current selection as
assembler code and writes to
Terminal view as well as log file

_viewsfrs

<SFR set> optional

Views all SFRs of a given SFR set.
If no SFR set is passed, the current
SFR set is viewed. The output is
done to the terminal view as well as
the log file.

_viewascii

Views the current selection as ascii
text and writes to Terminal view as
well as log file

36

Control Structures

Additionally, it is possible to use various control structures. A script (even in a loop) is aborted on occurance of an error
or by pressing ESC.

Supported control structures:

IF <expression>
<command>

ELSE
<command>

ENDIF

WHILE <expression>
<command>

ENDW

DO
<Command>

LOOP [UNTIL <Number>]

DO
<Command>

LOOP UNTIL <Expression>
Expressions
For control structures, simple expressions are supported to evaluate conditions. An expression

includes a comparator (=, >, <, >=, <=, <>) and two operands.
Operands can be a constant value, a variable or a SFR

Variables

Variables can be referenced in expressions and some commands. Variables are always 24 bit
hexadecimal values. Up to 100 variables can be used which are referenced by %0 to %99.

Labels

Labels are supported as well and can be jumped to:

GOTO <Label>:

<Label>:

37

MiniMon Communication Protocol

(function code) =
(acknowledge 1=AAh)
(parameters) 2>
(return parameters)
(

acknowledge 2=EAh) €

e
&

Name Funct.C. | Parameters Return Parameters
Write Word 82h 3 Bytes address (LSB first) None
2 Bytes value (LSB first)
Write Block of Bytes 84h |3 Bytes startaddress (LSB first) None
2 Bytes length, (LSB first)
<length> bytes values
Read Block of Bytes 85h |3 Bytes startaddress, (LSB first) <length> bytes values
2 Bytes length (LSB first)
Monitor Ext. Interface* 9Fh |3 Bytes program start address (LSB f.) | 8§ Word parameters R8-
(Call Subroutine) 8 Word parameters R8-R15 (LSB f.) |R15 (LSB f{.)
Simple Go Command 41h |3 Bytes program start address (LSB f.) | None
Execute EINIT 31h | None None
Execute SWRESET 32h | None None
Get Checksum 33h | None 1 Word checksum
Test of Communication 93h |None None
ASCO to ASC1 CCh |None None
Read Word CDh |3 Bytes startaddress, (LSB first) 2 Bytes value (LSB
first)
Write Word Sequence CEh |3 Bytes buffer start address (LSB f.) | None
1 Byte buffer length
Set protection D1h |1 Byte password None

1 Byte new password
1 Byte protection level

38

Monitor Extension Interface for User Subroutines/Drivers

Feature/Function | R8 | Parameters R9-R15 Return Parameters

Program Oh |R9..source block length, R15..error code
R10..source block start address low
R11..source block start address high
R13..destination address low
R14..destination address high

Erase 1h |R14..sector number R15..error code

Status 6h |R14..status byte number (sector number) R9..status byte,
R15..error code

Protect 20h |- R15..error code
Unprotect 21h |R9..password length, R15..error code
R10..password address low,
R11..password address high
Lock 10h |R14..sector number R15..error code
Unlock 11h |R9..password length, R15..error code

R10..password address low,
R11..password address high,
R14..sector number

Set Timing 04h |R9..programming pulse length code,
R10..max.number of programming pulses
R11..erasing pulse length code
R12..max.number of erasing pulses

39

Memory Management

Minimon follows a fully flexible memory management concept for all microcontroller software
components:

Monitor

The monitor minimon.hex has no absolute memory references (jump, call or data). It uses only
relative Jumps and internal General Purpose Registers (RO-R7). Therefore it is possible to locate the
monitor anywhere in internal or external memory. Of course, it ist possible to write the monitor in
external flash or eprom, too.

The initial start location of the monitor is at 00FA60h for the C16x family and E00024h for the
XC16x family. This location is in internal Ram which is supported by all 16 Bit controllers.

To relocate the monitor, the shell command _relocatemonitor <startaddress> is provided. A menue
command exists, too.

The Relocation of the monitor is done by downloading the monitor code to the new location and
making an absolute jump to the start address. That means: the monitor moves itself. Of course, the
old and the new location must not overlap.

Driver

Like the monitor, all included driver routines for flash/OTP programming have no location
restrictions. They can be located and moved anywhere. By default, they are located in interal Ram
or XRAM, depending on the type capabilities.

Data Exchange

The data exchange between monitor and the driver is done via internal RAM. By default this data
block starts at FC80.

40

Used Resources

One goal of Minimon is to use as less resources as possible. This concerns memory usage for program code, data, stack
and registers.

Kernel
The Minimon kernel is loaded into the internal RAM of the microcontroller.
Minimon is delivered with some kernels for families C16x, XC16x and XC2xxx. Due to different controller types and

functionality, they have different locations and sizes. The following table lists the default locations of the Minimon
kernel for each type:

Kernel Start address | End address
C16X_DEFAULT 00FA60 0O0OFBE7
C16X_KLINE 00FA60 0OOFBE9
C16X_FULL 00FA60 00FC09
C16X_AUTOBAUD_FULL 00FA60 00FC49
XC16X_DEFAULT E00024 EO001AB
XC16X_KLINE E00024 EO001AD
XC16X_FULL E00024 E0026D
XC16X_AUTOBAUD_FULL E00024 E002B5
XC2000_DEFAULT E00020 E001CD
XC2000_KLINE E00020 E001D1
XC2000_KLINE_STEPAI11 E00020 E001D1
P11_U_LE_KLINE E00020 EO01E1

These are the default locations for the kernels. Nevertheless, it is possible to relocate the kernel to a different location.
Of course, the size keeps the same.

Furtherly, the Minimon kernel can be integrated in a user application. In this case, the memory location of the kernel
can differ to the default locations.

Drivers

Drivers do not have a pre-defined location and size. Each driver has different memory needs for program and eventually
data.

Beside the program and data memory space, drivers can use additionally an transfer buffer to exchange data between
the kernel and the driver. Especially flash drivers use such buffers for exchange of the data to be programmed. The
default start location for the buffer is the addresss 00FC80, the default size is 128 bytes.

Registers

Minimon uses only one Register bank. It does not change the register bank location. Therefore, the calling application
has to provide the register bank or take care to save the contents before if needed afterwards. Normally, Minimon uses
the default register bank which is defined by the reset value of CP.

The Minimon kernel uses RO to R7 for operation. R8 to R15 are used to pass parameters when calling a driver or
subroutine.

Stack

Minimon uses the system stack but no additional user stack. The Minimon kernel itself does not change the stack size
and stack memory location. Therefore, the stack is used as delivered. In the most cases, the default stack settings after
reset are used (reset values).

The System Stack is only used for calling subroutines within the kernel as well as for calling driver routines. No further
push and pop operations are done. The kernel itself needs not more than 16 Bytes.
The stack usage of drivers is not specified and depends on the driver implementation.

41

Connect with the Target monitor

Minimon expects either a 16 Bit Microcontroller (C16x) with a bootstrap loader oder an already
downloaded and running monitor.
If the monitor is already running, a simple reconnect command is used to establish connection.

If not so, the connection of host and target starts by sending a zero byte to the target. The target
determines the baudrate and sends back its ID to the host. Then, 32 bytes loader program is sent
from host to target.

After the receiption of the 32th byte the loader is started and sends the acknowledge
LOADER_STARTED to the host. The loader receives the monitor program. The length of
MiniMon is known by the loader because both loader and minimon are linked together.

Finally, the MiniMon is started and sends the acknowlegde APPLICATION_STARTED to the host.

HOST MINIMON

—

ID-Byte

BSL

w

LOADER_STARTED

LONDERSTARTED

MiniMon (x Bytes) PRELOADER

APPLICATION STARTED

MINIMON

NORMAL COMMUNICATION

Remarks:

- Both the loader and the monitor program can be replaced by user programs. Their length is
known by the host because of their hex file contents. So it is possible to adapt the monitor
for individual needs. If adaption is needed, notice that loader and monitor have to be linked
together.

- The loader for XC2xxx family does not send the LOADER_STARTED byte due to 32 byte
limitation.

42

The target monitor

To keep the monitor small and flexible, the monitor program accepts only a little set of commands,
like write and read memory blocks. These Commands can be used for all other operations, e.g.
initialisation of SFRs, download of user programs or drivers, upload of specific memory blocks and
even monitor relocation. The write and read commands are done bytewise and with Data Page
Pointer 2. The EXTS command is not used because of compatibility reasons to 80C166.

Because in many cases it is not possible to write to SFR registers bytewise without interferring the
other part of the SFR, it is neccessary to provide an wordwise command for writing into SFR
registers.

Initialisation

The Monitor does not any initialisation commands and transfers except the disabling of the
watchdog timer (DISWDT). If needed (e.g. call EINIT or set SYSCON), this can done in the Host
Program (see Menue Target-Configuration). The monitor does not distinguish between initialisation
commands and normal execution or transfers. So it is possible to call the EINIT command at any
time later.

The initialisation of the serial interface is done by the bootstrap loader and is changed by a simple
data transfer command to SOBRS (host intelligence). Therefore no extra command is needed.

Start a user program

To provide the ability of user program starts, it can make an intersegment jump to a given start
address. The intersegment jump is done by pushing Startadress (1 Word Segment and 1 Word
Address) to the stack, and executing a RETS command. RETS pops the previous pushed values as
CSP and IP at the same time.

This ,jmp‘ command is used by SYSCON initialisation and monitor relocation, too. In both cases,
the jump address is the monitor start address.

For starting applications, a software reset command is provided, too.

Drivers

MiniMon has an extension interface, where any user subroutine can be downloaded and called. This
interface can be used for drivers (e.g. flash programming drivers), but also for user subroutines.
Therefore the host has to download the driver and instruct the monitor to call the driver start
address. The monitor does not know anything about the driver except his start address. Parameters
are passed via Registers R8-R15.

The host software handles the memory organisation of the driver, too. The user subroutine or driver
can be located anywhere in memory, its last command is the RETS command to return to the
monitor.

This concept provides a modular software system that is easy maintainable and adaptable. For

example, the driver subroutines are independent of any communication operation and implement
only the parts that are definitely necessary.

43

External files

All ,dynamic‘ Data needed by the frontend software is stored in external (text) files. This provides a
high maintainability and makes it possible to fit new microcontroller types.

The following data is stored in external files:
Preferences:

All settings in windows like paths, filenames, save settings, communication settings, the last script
filenames but also the actual target configuration settings can be stored and recalled in preference
files. If minimon is closed, it saves all these settings in the file DEFAULT.INIL.

When minimon is launched, DEFAULT.INI is loaded and all settings are done like the program was
closed.

It is possible to create user preference files, too. This can be used to store different hardware
configurations or test tasks separately.

Definition files:

Several definition files exist to meet with high maintainability, especially to integrate new
microcontroller types.

MCTYPES.DAT: This file contains all microcontroller types. A controller type is written in []. For
each type exist a link to the corresponding memory definition file and register definition file.

Example

[C167CR]
REGDEF=SFRDEF\C167CR.SFR
MEMDEF=MEMDEF\C167CR.MEM

KERNEL.DAT: This file contains all kernels currently provided by Minimon.

Example

KERNELNAME(0)=C16X_DEFAULT

LOADERPATH(0)=MCPROG\LOAD.HEX

MINIMONPATH(0)=MCPROG\MINIMON.HEX
FEATURES(0)=RELOCATABLE,WRITEWORD,WRITEBLOCK,READBLOCK,CALL,JMP,EINIT,SWRESET,GE
TCHECKSUM,TEST,READWORD

STARTADDRESS(0)=00FA60

ENDADDRESS(0)=00FBE7

PATCHSTARTADDRESS(0)=00F660

Register Definition file:

For each microcontroller type a SFR definition file exist. This file contains information about all
Special Function Register of the corresponding type, like Name, Bitnames and Address.

The SFR definition files are standardized and maintained by INFINEON. That means, any new
controller is supported by minimon (nearly) automatically.

All register definition files are located in the subdirectory SFRDEF in the actual minimon
application directory.

44

Memory Definition file:

Like the SFR definition files, a for each controller type a description file of all internal memory
regions exist. These files contain information about name, location, size, and type of each internal
,memory unit‘. For flash/OTP devices, they additionally contain information about driver file
location and driver functionality (driver features).

All memory definition files are located in the subdirectory MEMDEEF in the actual minimon
application directory.

45

